跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:丁瑞霖
研究生(外文):Jui-Lin Ting
論文名稱:靜態同步補償器應用於感應發電機併聯電力系統
論文名稱(外文):Application of Static Synchronous Compensator for a Grid-Connected Induction Generator
指導教授:許源浴許源浴引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:88
中文關鍵詞:風力發電感應發電機電壓調整靜態同步補償器
外文關鍵詞:wind energy generationinduction generatorvoltage regulationstatic synchronous compensator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著環保意識的抬頭與發電燃料成本價格的上漲,再生能源逐漸受到重視,風力發電即為其中一種方式。三相感應發電機為風力發電系統的電力來源,但由於感應機本身有電壓調整能力不佳的缺點,兼之風力的來源並不穩定,故需要額外的控制器。本論文應用一靜態同步補償器,提供系統無效電力,用來調整系統電壓,以及改善電壓品質。
靜態同步補償器,在架構上是由一直流電容器來提供電壓來源,並使用脈波寬度調變技術以調節三相電壓源型變流器的輸出電壓。
在模擬方面使用Matlab/Simulink軟體來評估系統的補償效果,實驗方面採以個人電腦為基礎,配合研華科技公司PCL-1800資料擷取卡,透過C語言來達成電壓補償控制,最後由模擬及實驗結果來驗證靜態同步補償器應用於感應機併聯電力系統,確實可以有效維持系統電壓的穩定性。
As the issue of environmental protection receives increasing attention and the price of fuel increases, renewable energy source, such as wind turbine generator system, is getting more and more important. Three phase induction generators are the main source of the power. Induction machines have unsatisfactory voltage regulation and the wind speed is variable. Hence, in this thesis, a static synchronous compensator is applied to supply reactive power for the system, to regulate bus voltage, and to achieve better voltage profile on the customer side.
The static synchronous compensator employs a direct current capacitor to offer voltage source and use the pulse-width modulation technique to adjust the output voltage of the three phase voltage source inverter.
The effectiveness of the STATCOM is investigated by simulations using the MATLAB/Simulink software and experiments. In the experiments, the controller of the STATCOM is based on a personal computer with Adventec PCL-1800 data acquisition cards. Digital control is implemented using C language. Finally, it is concluded from results of simulations and experiments the load bus voltage in a grid-connected induction generator can be effectively regulated by the STATCOM.
致謝......................................................i
摘要.....................................................ii
Abstract................................................iii
目錄.....................................................iv
圖目錄.................................................viii
表目錄..................................................xii
第一章 緒論..............................................1
1.1研究背景.............................................1
1.2文獻回顧.............................................1
1.3研究方法與目的.......................................5
1.4論文內容介紹.........................................6
第二章 感應發電機之特性分析與參數量測....................7
2.1前言.................................................7
2.2感應發電機的優缺點...................................7
2.3感應發電機併聯電力系統...............................8
2.4感應電機參數量測.....................................9
2.4.1定子電阻值之量測試驗.............................9
2.4.2堵住轉子試驗....................................10
2.4.3同步轉速試驗....................................12
第三章 靜態同步補償器簡介...............................14
3.1前言................................................14
3.2並聯補償器基本工作原理..............................14
3.2.1 STATCOM基本架構................................15
3.3靜態同步補償器對系統的影響..........................16
3.3.1電壓穩定度......................................16
3.3.2暫態穩定度......................................18
3.3.3功因改善........................................19
3.3.4電壓支撐........................................20
3.3.5線路傳輸功率....................................21
3.4補償器特性分析......................................23
3.5元件參數之決定......................................24
3.5.1電容器電壓與電容值設計..........................24
3.5.2補償器濾波電感器的設計..........................25
3.5.3補償器容量的計算................................26
3.6脈衝寬度調變(PWM)切換技術...........................26
3.6.1 PWM電壓控制器..................................26
3.6.2 變流器切換頻率之分析...........................28
第四章 演算法分析.......................................30
4.1前言................................................30
4.2演算法分析..........................................30
4.2.1同步旋轉座標轉換法..............................31
4.2.2靜態同步補償器之數學模型建立....................32
4.2.3解耦合電流控制..................................35
第五章 模擬結果與分析...................................37
5.1前言................................................37
5.2強健系統(Strong System)(電源阻抗較小)...............37
5.2.1轉速變動........................................37
5.2.2負載變動........................................41
5.3弱系統(Weak System)(電源阻抗較大) ..................44
5.3.1轉速變動........................................44
5.3.2負載變動........................................46
第六章 靜態同步補償器之實體製作.........................49
6.1前言................................................49
6.2硬體電路製作........................................49
6.2.1實作電路之系統架構..............................50
6.2.2研華PCL-1800資料擷取卡之簡介與設定..............51
6.2.3電力電路之製作..................................55
6.2.4驅動與互鎖電路之製作............................58
6.2.5同步控制電路及鎖相電路之製作....................61
6.2.6電壓、電流感測器之製作..........................66
6.2.7其他相關硬體之製作..............................68
6.3軟體程式規劃........................................69
6.3.1軟體簡介........................................69
6.3.2軟體程式之規劃設計..............................69
6.3.3類比訊號輸入控制流程............................71
6.3.4補償信號控制流程................................71
第七章 實驗結果與分析...................................72
7.1前言................................................72
7.2強健系統(Strong System)(電源阻抗較小)...............72
7.2.1轉速變動........................................72
7.2.2負載變動........................................76
7.3弱系統(Weak System)(電源阻抗較大) ..................79
7.3.1轉速變動........................................79
7.3.2負載變動........................................82
第八章 結論.............................................86
8.1結論................................................86
8.2未來研究方向........................................86
參考文獻.................................................87
[1] S.S. Murthy, O.P. Malik, and A.K. Tandon, “Analysis
of self-excited induction generators,” IEE PROC.,
Vol. 129, Pt. C, No. 6, pp. 260-265, November 1982.
[2] T.J.E. Miller, Reactive Power Control in Electric
System. John Wiley & Sons, Inc, 1982.
[3] L. Gyugyi, “Power Electronics in Electric Utilities:
Static Var Compensators,” Proceedings of the IEEE,
Vol. 76, No. 4, pp. 483-494, April 1998.
[4] N.G.. Hingorani and L. Gyugyi, Understanding FACTS:
Concepts and Technology of Flexible AC Transmission
Systems. Institute of Electrical and Electronics
Engineers, Inc, IEEE Press, 2000.
[5] Y. Sumi, Y. Harumoto, T. Hasegawa, M. Yano, K. Ikeda
and T. Matsuura, “New static var control using force-
commutated inverters,” IEEE Trans. on Power Apparatus
and Systems, Vol.3 PAS-100, No. 9, pp. 4216-4224, 1981.
[6] L. T. Moran, P. D. Ziogas, and G. Joos, “Analysis and
Design of a Three-Phase Synchronous Solid-State Var
Compensator,” IEEE Trans. on Power Delivery, Vol. 25,
No. 4, pp. 598-608, July/August 1989.
[7] G. Joos, L. Moran and P. Ziogas, “Performance
analysis of a PWM inverter VAR compensator,” IEEE
Trans. on Power Electronics, Vol. 6, No.3, pp.380-391,
July 1991.
[8] C. Schauder and H. Mehta, ”Vector Analysis and
Control of Advanced Static VAR Compensators,” IEE
Proceedings-C, Vol. 140, No. 4, pp. 299 – 306, July
1993.
[9] B.C. Bansal, “Three-Phase Self-Excited Induction
Generators: An Overview,” IEEE Trans. On Energy
Conversion, Vol. 20, No. 2, pp. 292-299, June 2005
[10] C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L.
Gyugyi, T. W. Cease and A. Edris, ”Operation of ±
100MVAR TVA STATCON,” IEEE Trans. on Power Delivery,
Vol. 12, No. 4, pp. 1805-1811, October 1997.
[11] 張權德,「用以改善動態特性之靜態同步補償器與整合型電力
潮流控制器之設計」,台灣大學電機所博士論文,2002。
[12] L. Gyugyi, “Dynamic compensation of AC transmission
lines by solid-state synchronous voltage sources,”
IEEE Trans. on Power Delivery, Vol. 9, No. 2, pp. 904-
911, April 1994.
[13] 翁永財,「應用於電壓調整之靜態同步補償器設計」,台灣大
學電機所碩士論文,2002。
[14] N. Mohan, T.M. Undeland, and W.P. Robbins, Power
Electronics: Converters, Applications, and Design.
John Wiley & Sons, Inc., 2003.
[15] H. Akagi, Y. Kanazawa and A. Nabae, “Instantaneous
Reactive Power Compensators Comprising Switching
Devices Without Energy Storage Components,” IEEE
Trans. on Industry Applications, Vol. IA-20, No. 3,
pp. 625-630, May/July 1984.
[16] PCL-1800 User’s Manual, Advantech Co., Ltd, 1995.
[17] C. Hochgraf, R.H. Lasseter, “Statcom Controls for
Operation with Unbalanced Voltages,” IEEE Trans. On
Power Delivery, Vol. 13, No. 2, pp.538-544, April
1998.
[18] F. Mei, B. Pal, “Modal Analysis of Grid-Connected
Doubly Fed Induction Generators,” IEEE Trans. on
Energy Conversion, Vol. 22, No. 3, pp. 728-736,
September 2007.
[19] R. Pena, J.C. Clare, and G.M. Asher, “Doubly fed
induction generator using back-to-back PWM converters
and its application to variable-speed wind-energy
generation,” IEE Proc. Eletr. Power Appl., Vol. 143,
No. 3, pp. 231-241, May 1996.
[20] S. Mohagheghi, G.K. Venayagamoorthy, and R.G. Harley,
“Adaptive Critic Design Based Neutro-Fuzzy Controller
for a Static Compensator in a Multimachine Power
System,” IEEE Tran. on Power Systems, Vol. 21, No.
4, pp. 1744-1754, November 2006.
[21] S. Mohagheghi, Y. del Valle, G.K. Venayagamoorthy,
and R.G. Harley, “A Proportional-Integrator Type
Adaptive Critic Design-Based Neurocontroller for a
Static Compensator in a Multimachine Power System,”
IEEE Trans. On Industrial Electronics, Vol. 54, No.
1, pp. 86-96, February 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊