|
[1]B.Razavi, Principles of Data Conversion System Design. Wiley-IEEE Press, 1995. [2]Rudy van de Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters. Kluwer Academic Publishers, 2003. [3]D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997. [4]P. R. Gray, et al., Analysis and Design of Analog Integrated Circuits. New-York: Wiley, 2001. [5]S-C. Lee, K.-D. Kim, J.-K. Kwon, et al., “A 10-bit 400-MS/s 160-mW 0.13-μm CMOS dual-channel pipeline ADC without channel mismatch calibration,” IEEE J. Solid-State Circuits, vol. 41, pp. 1596-1605, Jul. 2006. [6]B. R. Gregoire and U.-K. Moon, “An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with 30 dB loop gain,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 540–541. [7]B. Murmann and B. E. Boser, “A 12 b 75 MS/s pipelined ADC using open-loop residue amplification,” in ISSCC Dig. Tech. Papers, Feb. 2003, pp. 328–329. [8]Y. Chiu, C. W. Tsang, B. Nikolic, and P. R. Gray, “Least mean square adaptive digital background calibration of pipelined analog-to-digital converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 1, pp. 38–46, Jan. 2004. [9]J. McNeill, M. Coln, and B. Larivee, “A Split-ADC architecture for deterministic digital background calibration of a 16b 1 MS/s ADC,” in ISSCC Dig. Tech. Papers, Feb. 2005, pp. 276–598. [10]B. Razavi and B. A. Wooley, “Design Techniques for High-Speed, High- Resolution Comparators,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1916-1926, Dec. 1992. [11]Y. M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3-μm CMOS,” IEEE J. Solid-State Circuits, vol. 26, pp. 628-636, Apr. 1991. [12]H. W. Chen, I. C. Chen, H. C. Tseng, and H. S. Chen, “A 1-GS/s 6-bit Two- Channel Two-Step ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 44, pp. 3051-3059, Nov. 2009. [13]Limotyrakis, S.; Kulchycki, S.D.; Su, D.K.; Wooley, B.A., “A 150-MS/s 8-b 71- mW CMOS time-interleaved ADC,” IEEE J. Solid-State Circuits, vol. 40, pp. 1057-3059, May. 2005. [14]Byung-Moo Min; Kim, P.; Bowman, F.W., III; Boisvert, D.M.; Aude, A.J., “A 69-mW 10-bit 80-MSample/s Pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003. [15]Abo, A.M.; Gray, P.R., “A 1.5-V 10-bit 14.3-MS/s CMOS pipeline analog-to- digital converter,” IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May. 1999. [16]Jong-Bum Park, Sang-Min Yoo, Se-Won Kim, Young-Jae Cho, Seung-Hoon Lee, “A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D converter with 400-MHz input bandwidth,” IEEE J. Solid-State Circuits, vol. 39, Issue 8, Aug. 2004. [17]Kang-Wei Hsueh, Yu-Kai Chou, Yu-Hsuan Tu, Yi-Fu Chen, Ya-Lun Yang, Hung-Sung Li, “A 1V 11b 200MS/s Pipelined ADC with Digital Background Calibration in 65nm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 546–634. [18]Seung-Chul Lee; Young-Deuk Jeon; Kwi-Dong Kim; Jong-Kee Kwon; Jongdae Kim; Jeong-Woong Moon; Wooyol Lee, “A 10b 205MS/s 1mm2 90nm CMOS Pipeline ADC for Flat-Panel Display Applications,” in ISSCC Dig. Tech. Papers, Feb. 2007, pp. 458–615. [19]Y. Chiu, P. R. Gray and B. Nikolic, “A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR,” IEEE J. Solid-State Circuits, vol. 39, pp. 2139–2151, Dec. 2004.
|