跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊祺
研究生(外文):Huang Chun Chi
論文名稱:小波理論應用於暫態訊號之即時分析研究
論文名稱(外文):A study on the Real-Time Analysis of Transient Signal with Wavelet Theory
指導教授:王昭男王昭男引用關係
指導教授(外文):Wang Chao Nan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:造船及海洋工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:65
中文關鍵詞:小波轉換數位訊號處理暫態訊號噪訊消除TMS320C32
外文關鍵詞:Wavelet TransformDigital Signal ProcessingTransient SignalDe-noiseTMS320C32
相關次數:
  • 被引用被引用:12
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:1
現今量測的技術上,在現場量測的訊號多為暫態時變訊號且夾雜許多高頻雜訊,而整個系統如何達到即時監控並能提高訊號雜訊比,擷取有效訊號是相當重要的課題。
本文採用小波理論來分析暫態訊號,因為小波函數具有局部性與多層次解析能力的特性,能將有效訊號與雜訊作有效的隔離。並且小波演算法的架構適合應用於即時的運算,且能作彈性化的設計。
所以本文以小波演算法為核心程式,配合數位訊號處理專用晶片TMS320C32,建立一套能即時監視的訊號量測系統。起初以SIMULINK軟體建構小波演算模型,但在本系統其取樣頻率無法提昇,原因是模型的規模過大,為了縮小程式的規模因此改用C++直接編寫程式碼。而在系統實驗中實際輸入一些較單純的暫態突變訊號,進而探討其結果。
Signal detection is an important topic to increase signal to noise ratio and to execute the real-time monitoring. In present study, the wavelets theory is used to analyze the transient signal. The character of localization and the multiresolution capability of the wavelets theory can separate the signal and noise effectively. Thus it is suitable for the real-time analysis.
In this work, a real-time measuring system that use SIMULINK® and C++ software to build the wavelet model based on the TMS320C32 Board is established.
Some simple transient signals have been put in the system to test its efficiency. The result of C++ software is better than that of SIMULINK® . However, it still needs improvements to used in real situations.
頁數
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅴ
第一章 緒論 1
1.1 研究動機與目的 1
1.2 相關研究 2
第二章 小波理論之簡介 4
2.1 箱型函數與多層解析空間 4
2.1.1 階梯函數與箱型函數 4
2.1.2 多層解析空間 5
2.1.3 正則基底 7
2.2 哈耳函數(Haar function) 7
2.3 多層解析空間的基底變換 9
2.4 自格函數(Scaling function) 11
第三章 離散小波轉換與訊號處理 19
3.1 離散小波轉換 20
3.2 小波轉換之矩陣運算 22
3.3 縮減法(Thresholding ) 24
3.4 小波轉換與傅立葉轉換之比較 25
第四章 即時系統發展與模型建立 29
4.1 系統硬體 29
4.1.1 硬體 29
4.1.2 軟體 30
4.2 Model-To-Chip 之系統流程 31
4.3 產生目的碼----使用Pipe-Line觀念 32
第五章 結果與討論 33
第六章 結論與展望 36
參考文獻 38
[1] 單維彰, ”凌波初步, ”全華科技圖書股份有限公司.
[2] N. Weyrich, Gregory T. Warhola, ”wavelet shrinkage and Generalized cross validation for image denoising,” IEEE Transactions on Inage Processing, vol. 7, no. 1, p.82-90, January 1998.
[3] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, p.674-693, 1989.
[4] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and Applied Mathematics vol.41, p.909-996, 1988.
[5] A. S. John, U. B. Desai, ”Signal De-noising Using the wavelet transform and regularization ,” IEEE international conference on , ICASSP-97, vol. 3, p.1861-1864, 1997.
[6] W. S. Ivan, Levnent Sendur, ”smooth wavelet frames with applicat ion to denoising,” Acoustics, Speech, and Signal Processing 2000, ICASSP ''00., 2000 IEEE International Conference on , vol. 1, p.129-132, 2000.
[7] Jhing-Fa Wang, Shi-Huang Chen, Jyh-Shing Shyuu, ”Wavelet transforms for speech signal processing,” Journal of the Chinese Institute, vol. 22, no. 5, p.549-560, 1999.
[8] Louis R., Litwin, Jr., ”speech coding with wavelets,” IEEE POTENTIALS, p.38-41, April/May 1998.
[9] A. Elmitwally, S. Farghal, M. Kandil, S. Abdelkader, M. Elkateb, ” Proposed wavelet- neurofuzzy combined system for power quality violations detection and diagnosis, ”IEE Proc. Gener. Transm. Distrib. , vol.148, no.1, p.15-20, January 2001.
[10] G. G. Karady, R. H. Manuel, F. Amarh, G. McCulla, ”Improved Technique for fault detection sensitivity in transformer impulse test,” 2000. IEEE , Power Engineering Society Summer Meeting, vol. 4, p.2412-2416, 2000.
[11] X. Yibin, Q. Li, David Chan Tat Wai, ”DSP Implenentation of a wavelet analysis filter bank for high impedance fault detection,” Energy Management and Power Delivery, 1998. Proceedings of EMPD ''98, 1998 International Conference on, vol. 2, p.417-421, 1998.
[12] J. Yin, M. Lu, J. Piñeda de Gyvez, ”Full-Signature Real-Time Corrosion Detection of Underground Casing Pipes,” IEEE Transaction On Instrumantation And Measurement, vol.49, no.1, p.120-128, 2000.
[13] G. Yuanbin, Y. Caowei, W. Bin, L. Qihu, Z. Weiming, ”real-t ime extraction of targer’s parameters of sonar by wavelet implemented on TMS320C31,” IEEE international conference on communication technology, ”ICCT’ 98, s36-04, p.1-5, 1998.
[14] H. Hanselmann, ”DSP in : The Total Development Environme nt , ” Industrial Electronics, Control, and Instrumentation, 1996., Proceedings of the 1996 IEEE IECON 22nd International Conference on, vol.3, p.1647-1654, 1996.
[15] J. C. Goswami, A. K. Chan, “Fundamentals of Wavelets : Theory, Algorithms and Applications,” Wiley-Interscience, p.216-218, 1999.
[16] R. J. Barsanti, M. P. Fargues, “ Wavelet-Based Denoising of Acoustic Transients,“ Signals, Systems and Computers, 1996. Conference Record of the Thirtieth Asilomar Conference on , vol. 2, p.848-852, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top