|
[1]Hiwin Technology Company, Hiwin Ball screws Technical Information, Hiwin Technology Company, Taiwan, 2012. [2]C. Chen, G. Vachtsevanos, M.E. Orchard, Machine remaining useful life prediction: An integrated adaptive neuro-fuzzy and high-order particle filtering approach, Mechanical Systems and Signal Processing 28 (2012) 597-607. [3]Y. Hu, S. Liu, H. Lu, H. Zhang, Remaining Useful Life Assessment and its Application in the Decision for Remanufacturing, Procedia CIRP 15 (2014) 212-217. [4]X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, Remaining useful life estimation–A review on the statistical data driven approaches, European journal of operational research 213(1) (2011) 1-14. [5]C. Brecher, S. Witt, T. Yagmur, Influences of Oil Additives on the Wear Behavior of Ball Screws, Production Engineering-Research and Development 3 (2009) 323-327. [6]M.C. Lin, B. Ravani, S.A. Velinsky, Kinematics of the Ball Screw Mechanism, Journal of Mechanical DesignTransactions of the ASME 116 (1994) 849-855. [7]Y. Tokunaga, T. Igarashi, T. Sugiura, Studies on the Sound and Vibration of a Ball Screw (Sound Characteristics of a Ball Screw), JSME International Journal Ser. 3, 31(4) (1988) 732-738. [8]S. Gade, H. Herlufsen, H. KonstantinHansen, N.J. Wismer, Order Tracking Analysis, B&K Technical Review, Denmark, 1995. [9]R. Potter, A new Order Tracking Method for Rotating Machinery, Sound and Vibration 24 (1990) 30-34. [10]K.R. Fyfe, E.D.S. Munck, Analysis of Computed Order Tracking, Mechanical Systems and Signal Processing 11(2) (1997) 187-205. [11]C. Feldbauer, R. Höldrich, Realization of a Vold-Kalman Tracking Filter–A Least Square Problem, Proceedings of the COST G-6 Conference on Digital Audio Effects (2000) 1-4. [12]M.C. Pan, Y.F. Lin, Further Exploration of Vold-Kalman Filtering Order Tracking with Shaft-Speed Information-I: Theoretical Part, Numerical Implementation and Parameter Investigations, Mechanical Systems and Signal Processing 20 (2006) 1134-1154. [13]M.C. Pan, Y.F. Lin, Further Exploration of Vold-Kalman Filtering Order Tracking with Shaft-Speed Information-II: Engineering Applications, Mechanical Systems and Signal Processing 20 (2006) 1410-1428. [14]J.L. Chang, J.A. Chao, Y.C. Huang, J.S. Chen, Prognostic Experiment for Ball Screw Preload loss of Machine Tool through the Hilbert-Huang Transform and Multiscale Entropy Method, Proceedings of the 2010 IEEE International Conference on Information and Automation (2010). [15]W. Jin, Y. Chen, J. Lee, Methodology for Ball Screw Component Health Assessment and Failure Analysis, Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference (2013), Madison, Wisconsin, USA, V002T02A031-V002T02A031. [16]J.B. Ali, B. Chebel-Morello, L. Saidi, S. Malinowski, F. Fnaiech, Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network, Mechanical Systems and Signal Processing 56 (2015) 150-172. [17]W.Z. Liao, E.S. Pan, Y. Wang, L.F. Xi, Research of predicting machine's remaining useful life based on statistical pattern recognition and auto-regressive and moving average model, Journal of Shanghai Jiaotong University 45(7) (2011) 1000–1005. [18]S. Kasai, T. Tsukada, S. Kato, Precision linear guides for machine tools, NSK Technical Journal 647 (1987) 39-50. [19]S. Yamada, M. Hamano, N. Oshima, A study on the noise emission from a linear motion bearing, Proceedings of the Meeting, the Inst. of Noise Control Engineering of Japan (1986) 5-8. [20]H. Ohta, K. Matsuura, S. Kato, Y. Igarashi, Vibration and acoustic emission of linear-guideway type recirculating ball bearings with a millimeter-sized artificial defect in the carriage, Journal of Tribology 132 (2010) 011101. [21]S. Kasai, T. Tsukada, S. Kato, Recent technical trends of linear guides, NSK Technical Journal 649 (1988) 27-36. [22]J. Ye, N. Lijima, F. Tashiro, S. Hagiwara, S. Yamada, Vibration of linear motion bearing, Proceedings of Spring JSPE Meeting 14 (1988) 199-200. [23]H. Ohta, E. Hayashi, Vibration of linear guideway type recirculating linear ball bearings, Journal of Sound and Vibration 235(5) (2000) 847861. [24]M. Schneider, Statisches und dynamisches Verhalten heim Einsatz Linearer Schienenf Uhrungen auf Wdlzlugerhasis im Werkzeugmaschinenhau, Carl Hanser Verlag, Miinchen, Wien, 1991. [25]H. Ohta, Sound of linear guideway type recirculating linear ball bearings, Journal of Tribology 121(4) (1999) 678-685. [26]B. Peeters, P. Guillaume, H. Van der Auweraer, B. Cauberghe, P. Verboven, J. Leuridan, Automotive and aerospace applications of the PolyMAX modal parameter estimation method, Proceedings of IMAC 22 (2004) 26-29. [27]C.C. Wei, J.F. Lin, Kinematic Analysis of the Ball Screw Mechanism Considering Variable Contact Angles and Elastic Deformations, Journal of Mechanical DesignTransactions of the ASME 125 (2003) 717-733. [28]T.E. Tallian, O.G. Gustafsson, Progress in Rolling Vibration Research and Control, ASLE Transactions 8 (1965) 195-207. [29]F.P. Wardle, S.Y. Poon, Rolling Bearing Noise-Cause and Cure, Chartered Mechanical Engineer 30 (1983) 36-40. [30]N. Aktürk, M. Uneeb, R. Gohar, The effects of Number of Balls and Preload on Vibrations Associated with Ball Bearings, Journal of Tribology 119 (1997) 747-753. [31]J. Tian, M.H. Azarian, M. Pecht, Anomaly Detection Using Self-Organizing Maps-Based K-Nearest Neighbor Algorithm, Proceedings of European Conference of the Prognostics and Health Management Society (2014). [32]T. Kohonen, The Self-Organizing Map, Proceedings of the IEEE 78(9) (1990) 1464-1480. [33]J.B. Yu, L.F. Xi, Using an MQE Chart Based on a Self-Organizing Map NN to Monitor Out-of-Control Signals in Manufacturing Processes, International Journal of Production Research 46(21) (2008) 5907-5933. [34]P. Kang, D. Birtwhistle, Condition assessment of power transformer onload tap changers using wavelet analysis and self-organizing map: field evaluation, IEEE Transactions on Power Delivery 18(1) (2003) 78-84. [35]P. Mahalanobis, On the Generalized Distance in Statistics, Proceedings of the National Institute of Sciences (Calcutta) 2 (1936) 49–55. [36]R. De Maesschalck, D. J.-R., D.L. Massart, The Mahalanobis Distance, Chemometrics and Intelligent Laboratory Systems 50(1) (2000) 1–18. [37]L. Zhang, Q. Cao, J. Lee, F.L. Lewis, PCA-CMAC Based Machine Performance Degradation Assessment. Journal of Southeast University 21(3) (2005) 299–303. [38]K.K. Nair, A.S. Kiremidjian, Time Series Based Structural Damage Detection Algorithm Using Gaussian Mixtures Modeling, Journal of Dynamic Systems, Measurement, and Control 129(3) (2007) 285–293. [39]W. Liu, X. Zhong, J. Lee, L. Liao, M. Zhou, Application of a Novel Method for Machine Performance Degradation Assessment Based on Gaussian Mixture Model and Logistic Regression, Chinese Journal of Mechanical Engineering 24 (2011) 879-884. [40]G.J. McLachlan, Discriminant analysis and statistical pattern recognition, John Wiley & Sons, Inc., 2004. [41]G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, 1st ed., John Wiley & Sons, New Jersey, 2006. [42]A. Heng, S. Zhang, A.C.C. Tan, J. Mathew, Rotating machinery prognostics: state of the art, challenges and opportunities, Mechanical Systems and Signal Processing 23 (2009) 724–739. [43]J.B. Ali, N. Fnaiech, L. Saidi, B. Chebel-Morello, F. Fnaiech, Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals, Applied Acoustics 89 (2015) 16–27. [44]T. Brotherton, G. Jahns, J. Jacobs, D. Wroblewski, Prognosis of faults in gas turbine engines, in Aerospace Conference Proceedings (2000) 163–171. [45]L. Zhang, R. Brincker, P. Andersen, An overview of operational modal analysis: major development and issues, in 1st International Operational Modal Analysis Conference (2005) 179190. [46]P. Andersen, Identification of civil engineering structures using vector ARMA models, Ph.D. Thesis, Aalborg University, Denmark, 1997. [47]I. Zaghbani, V. Songmene, Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis, International Journal of Machine Tools and Manufacture 49(12) (2009) 947-957. [48]P. Guillaume, P. Verboven, S. Vanlanduit, H. Van der Auweraer, B. Peeters, A poly-reference implementation of the least-squares complex frequency-domain estimator, Proceedings of IMAC 21 (2003) 183-192. [49]C. Devriendt, G. De Sitter, S. Vanlanduit, P. Guillaume, Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements, Mechanical Systems and Signal Processing 23 (2009) 621-635. [50]C. Devriendt, P. Guillaume, Identification of modal parameters from transmissibility measurements, Journal of Sound and Vibration 314 (2008) 343-356. [51]I.G. Araújo, J.E. Laier, Operational modal analysis using SVD of power spectral density transmissibility matrices, Mechanical Systems and Signal Processing 46 (2014) 129-145. [52]R.J. Allemang, The modal assurance criterion–twenty years of use and abuse, Sound and vibration 37 (2003) 14-23. [53]R.J. Allemang, D.L. Brown, A correlation coefficient for modal vector analysis, Proceedings of the 1st international modal analysis conference 1 (1982) 110-116.
|