跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.144) 您好!臺灣時間:2025/12/01 10:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡秉均
研究生(外文):TSAI,PING-CHUN
論文名稱:滾珠螺桿進給系統預壓力監測技術之研發
論文名稱(外文):Developments of Preload Monitoring Techniques of Ball Screw Feed Drive Systems
指導教授:鄭志鈞
指導教授(外文):CHENG, CHIH-CHUN
口試委員:蔡孟勳白明憲光灼華潘敏俊林仁輝黃逸群宋震國
口試日期:2017-05-19
學位類別:博士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:79
中文關鍵詞:滾珠螺桿線性滑軌預壓力衰退馮卡曼濾波球通頻率自組織映射圖操作模態分析
外文關鍵詞:Ball screwlinear guidewaypreload degradationVold-Kalman Filteringball pass frequencySelf-organizing mapOperational modal analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:846
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:2
本研究主要發展了兩項針對滾珠螺桿進給系統的預壓力監測技術,第一項為滾珠螺桿的預壓力監測及其剩餘壽命預估之技術;而第二項則為一針對線性滑軌型滾珠軸承的預壓力監測技術。在滾珠螺桿的預壓力監測方面,本研究提出一種基於自組織映射圖的自動監測預壓力衰退之方法,透過於螺桿上安裝一加速規並量測其振動訊號,經馮卡曼濾波階次追蹤法處理後可得其階次譜,再由本研究所提出之階次譜量化方法將實際球通階次、球通振動量、球通振動變異數及階次譜分散度等四項可有效反映預壓變化之指標抽取出,爾後再透過自組織映射圖進行訓練並計算其最小量化誤差值,進一步可計算得滾珠螺桿之健康值,並依此進行預壓力衰退監測。相關測試實驗結果顯示此法可有效監測預壓力衰退情形,並依本研究所提出之剩餘壽命預估方法進行螺桿剩餘壽命預估。
而在線性滑軌型滾珠軸承的預壓力監測方面,本研究提出一種可自動監測預壓力衰退之方法。經由有限元素分析模擬得知,當預壓力衰退時進給系統之工作載台的偏擺模態自然頻率之改變量將會正比於預壓力的改變量。透過於工作載台上安裝三個呈直線排列之加速規,以進給系統之驅動馬達施加一激振力於工作載台並以該加速規量測振動訊號,爾後應用操作模態分析搭配模態保證準則鑑別得該工作載台之偏擺模態及其對應之自然頻率,並根據追蹤該自然頻率之變化量以間接偵測線性滑軌型滾珠軸承的預壓力是否衰退。
Two preload monitoring techniques for ball screw feed drive systems have been developed in this study. The first focuses on the preload monitoring of ball screw and the estimation of the ball screw remaining useful life (RUL). The second is the preload monitoring aiming for linear guideway type (LGT) ball bearings. A novel method in monitoring automatically the preload degradation for a ball screw feed drive system based on self-organizing map (SOM) is presented and its performance is experimentally assessed. Four features from an vibration order spectrum, the actual ball pass order (ABPO), the vibration RMS amplitude at ABPO, the variance of vibration at ABPO and the dispersion of order spectra are proposed to quantify the difference in characteristics between ball screws with and without preloads. By simply attaching an accelerometer on the ball screw nut of a ball screw feed drive system in operation, these four parameters are calculated by using Angular Velocity Vold-Kalman Filtering Order Tracking (AV VKF-OT). With these four parameters, the prediction accuracy in monitoring the ball screw preload degradation is much improved and can be realized practically. Moreover, an algorithm for estimating RUL of ball screw is proposed and then validated through a run-to-failure test which simulates the practical applications.
In the second part, a novel method for automatically monitoring the preload degradation of LGT recirculating linear ball bearings is proposed. Simulations and experiments both revealed that the reduction in the natural frequency corresponding to the yawing mode of the worktable is sensitive to and varied linearly with the degradation of the LGT linear bearing preload. By attaching three accelerometers to the worktable of a machine tool and then exciting the worktable with a pulse from the servo motor of a feed drive, this study identified the natural frequencies of the worktable and their corresponding mode shapes by using operational modal analysis (OMA). Among all the natural frequencies obtained by OMA, the natural frequency corresponding to the specific yawing mode of the worktable was extracted using the modal assurance criteria, and the change in the extracted frequency was tracked; thus, the degradation of LGT linear bearing preload could be monitored automatically without exciting the worktable manually.

目錄
1. Research overview 1
1.1 Introduction 1
1.2 Literature review 2
1.3 Research objectives 6
1.4 Thesis outline 7
2. Ball screw preload monitoring based on ball screw vibration 9
2.1 Theoretical ball pass frequency in ball screw feed drive system 9
2.2 The angular velocity Vold-Kalman filtering order tracking 12
2.3 Assessment of order tracking techniques 15
2.4 Parameters extracted from ball pass vibration order spectra 21
3. Ball screw preload monitoring and remaining useful life predictions 27
3.1 Experimental assessment of parameters used in preload loss detection 27
3.2 Preload degradation monitoring based on self-organizing map 32
3.3 Implementation of automatic preload degradation monitoring using self-organizing map 34
3.4 Remaining useful life prediction of ball screw 45
4. LGT preload monitoring based on changes of worktable natural frequency 53
4.1 Finite element analysis of LGT recirculating linear ball bearings 53
4.2 Sensitivity analysis of LGT recirculating linear ball bearings 58
5. Preload monitoring of LGT using OMA 61
5.1 Operational modal analysis 61
5.2 Worktable natural frequency identified using OMA 64
5.3 Methodology and implementation of automatic LGT preload monitoring 66
6. Conclusions and future works 71
References 75



圖目錄
Fig. 1 1. Ball screw and nut [1]. 1
Fig. 1 2. Linear guideway and blcoks [1]. 2
Fig. 2 1. The position of ball center in Cartesian and Frenet coordinates. 10
Fig. 2 2. Phase angle between two consecutive balls. 10
Fig. 2 3. Illustration of the contacts of ball to nut and ball to screw; (a) Ball-nut contact, (b) ball-screw contact. 11
Fig. 2 4. Illustration of a part of synthetic signal and its components; (a) 1st order component, (b) 2.5th order component, (c) 4th order component, (d) 20 Hz component, (e) synthetic signal. 15
Fig. 2 5. Synthetic signal for tachometer. 16
Fig. 2 6. Order spectra of synthetic signal transformed using COT with a record length of 120 seconds equivalent to shaft rotating from 0 to 1200 RPM. 17
Fig. 2 7. Order spectra of synthetic signal transformed using COT with a record length of 3.5 seconds. 18
Fig. 2 8. Order spectra of synthetic signal transformed using AV VKF-OT with a record length of 3.5 seconds. 18
Fig. 2 9. Order spectra transformed by COT for signal segment starting from 35 to 37 second. 19
Fig. 2 10. Order spectra transformed by AV VKF-OT for signal segment starting from 35 to 37 second. 19
Fig. 2 11. The relative errors between 1st, 2.5th, and 4th order components for signal segment starting from 35 to 37 seconds. 20
Fig. 2 12. An illustration of order spectra measured from a ball screw feed drive system. 24
Fig. 2 13. Vibration RMS amplitudes of each order in an order spectrum. 24
Fig. 2 14. An illustration of the vibration at the ABPO of 9.05 along the ball screw shaft. 25
Fig. 3 1. An illustration of the custom made ball screw feed drive system. 27
Fig. 3 2. Illustrations of computations of order spectrum from vibration of ball screw; (a) measured acceleration, (b) vibration order spectra. 30
Fig. 3 3. Parameter comparisons between parts of ball screw with 4%, 1% and 0% preload at 1050 RPM; (a) ABPO, (b) vibration RMS amplitudes at ABPO, (c) variances of vibrations at ABPO, (d) dispersion of order spectra. 31
Fig. 3 4. Condition monitoring for preload tests using MQE chart. 34
Fig. 3 5. An illustration of rapid and normal running mode. 36
Fig. 3 6. Four parameters time history at 1600 RPM under normal running mode; (a) ABPO, (b) vibration RMS amplitudes at ABPO, (c) variances of vibrations at ABPO, (d) dispersion of order spectra. 38
Fig. 3 7. Condition monitoring for run-to-failure test of ball screw using MQE chart. 39
Fig. 3 8. An illustration of CV based on the overlap area of two distributions. 42
Fig. 3 9. An illustration of creating subsets from MQEs through a moving window. 43
Fig. 3 10. Health values of ball screw analyzed using MD in run-to-failure test. 44
Fig. 3 11. Health values of ball screw analyzed using CV in run-to-failure test. 44
Fig. 3 12. Methodology in monitoring the preload degradation for a ball screw feed drive system automatically. 45
Fig. 3 13. An illustration of RUL estimation. 48
Fig. 3 14. RUL estimation from the run-to-failure test; (a) health values calculated by using MD, (b) health values calculated by using CV. 50
Fig. 4 1. (a) X-Y table for experimental study, (b) 29 measuring positions (red marks) on the worktable when conducting EMA. 54
Fig. 4 2. Finite element model and mode shape of worktable from simulation; (a) Finite element model, (b) yawing mode, (c) rolling mode, (d) pitching mode. 56
Fig. 4 3. (a) LGT linear ball bearing, (b) model simulating contact between LGT carriage and linear guideway in ANSYS. 57
Fig. 4 4. Natural frequency versus carriage stiffness from FEM simulations. 60
Fig. 4 5. Natural frequency variation caused by preload change from FEM simulations. 60
Fig. 5 1. Three-accelerometer setup for OMA. 64
Fig. 5 2. Singular value spectra from OMA. 65
Fig. 5 3. (a) Three-accelerometer setup in a row for yawing mode detection, (b) vibration power spectra (dB) using short-time Fourier transform. 68


表目錄
Table 3 1 Ball screw HIWIN R40-10K4-FSC-1305-1538-0.018 specification 28
Table 3 2 Ball screw HIWIN R20-10K3-FSC-724-815-0.008 specification 35
Table 3 3 Setup of running modes 37
Table 4 1 Specifications of X-Y table 55
Table 4 2 Ball screw specifications 55
Table 4 3 Comparisons of natural frequencies of the worktable in terms of lightly and heavily preloaded LGT carriages 58
Table 4 4 Natural frequencies of the worktable in terms of varying preloads from FEM simulations 59
Table 5 1 Natural frequencies identified by EMA and OMA 66
Table 5 2 Natural frequencies of the worktable, mode shapes, and MAC from OMA 67
Table 5 3 Comparisons of natural worktable frequencies of yawing mode for lightly preloaded LGT carriages excited by the servo motor 70

[1]Hiwin Technology Company, Hiwin Ball screws Technical Information, Hiwin Technology Company, Taiwan, 2012.
[2]C. Chen, G. Vachtsevanos, M.E. Orchard, Machine remaining useful life prediction: An integrated adaptive neuro-fuzzy and high-order particle filtering approach, Mechanical Systems and Signal Processing 28 (2012) 597-607.
[3]Y. Hu, S. Liu, H. Lu, H. Zhang, Remaining Useful Life Assessment and its Application in the Decision for Remanufacturing, Procedia CIRP 15 (2014) 212-217.
[4]X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, Remaining useful life estimation–A review on the statistical data driven approaches, European journal of operational research 213(1) (2011) 1-14.
[5]C. Brecher, S. Witt, T. Yagmur, Influences of Oil Additives on the Wear Behavior of Ball Screws, Production Engineering-Research and Development 3 (2009) 323-327.
[6]M.C. Lin, B. Ravani, S.A. Velinsky, Kinematics of the Ball Screw Mechanism, Journal of Mechanical DesignTransactions of the ASME 116 (1994) 849-855.
[7]Y. Tokunaga, T. Igarashi, T. Sugiura, Studies on the Sound and Vibration of a Ball Screw (Sound Characteristics of a Ball Screw), JSME International Journal Ser. 3, 31(4) (1988) 732-738.
[8]S. Gade, H. Herlufsen, H. KonstantinHansen, N.J. Wismer, Order Tracking Analysis, B&K Technical Review, Denmark, 1995.
[9]R. Potter, A new Order Tracking Method for Rotating Machinery, Sound and Vibration 24 (1990) 30-34.
[10]K.R. Fyfe, E.D.S. Munck, Analysis of Computed Order Tracking, Mechanical Systems and Signal Processing 11(2) (1997) 187-205.
[11]C. Feldbauer, R. Höldrich, Realization of a Vold-Kalman Tracking Filter–A Least Square Problem, Proceedings of the COST G-6 Conference on Digital Audio Effects (2000) 1-4.
[12]M.C. Pan, Y.F. Lin, Further Exploration of Vold-Kalman Filtering Order Tracking with Shaft-Speed Information-I: Theoretical Part, Numerical Implementation and Parameter Investigations, Mechanical Systems and Signal Processing 20 (2006) 1134-1154.
[13]M.C. Pan, Y.F. Lin, Further Exploration of Vold-Kalman Filtering Order Tracking with Shaft-Speed Information-II: Engineering Applications, Mechanical Systems and Signal Processing 20 (2006) 1410-1428.
[14]J.L. Chang, J.A. Chao, Y.C. Huang, J.S. Chen, Prognostic Experiment for Ball Screw Preload loss of Machine Tool through the Hilbert-Huang Transform and Multiscale Entropy Method, Proceedings of the 2010 IEEE International Conference on Information and Automation (2010).
[15]W. Jin, Y. Chen, J. Lee, Methodology for Ball Screw Component Health Assessment and Failure Analysis, Proceedings of the ASME 2013 International Manufacturing Science and Engineering Conference (2013), Madison, Wisconsin, USA, V002T02A031-V002T02A031.
[16]J.B. Ali, B. Chebel-Morello, L. Saidi, S. Malinowski, F. Fnaiech, Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network, Mechanical Systems and Signal Processing 56 (2015) 150-172.
[17]W.Z. Liao, E.S. Pan, Y. Wang, L.F. Xi, Research of predicting machine's remaining useful life based on statistical pattern recognition and auto-regressive and moving average model, Journal of Shanghai Jiaotong University 45(7) (2011) 1000–1005.
[18]S. Kasai, T. Tsukada, S. Kato, Precision linear guides for machine tools, NSK Technical Journal 647 (1987) 39-50.
[19]S. Yamada, M. Hamano, N. Oshima, A study on the noise emission from a linear motion bearing, Proceedings of the Meeting, the Inst. of Noise Control Engineering of Japan (1986) 5-8.
[20]H. Ohta, K. Matsuura, S. Kato, Y. Igarashi, Vibration and acoustic emission of linear-guideway type recirculating ball bearings with a millimeter-sized artificial defect in the carriage, Journal of Tribology 132 (2010) 011101.
[21]S. Kasai, T. Tsukada, S. Kato, Recent technical trends of linear guides, NSK Technical Journal 649 (1988) 27-36.
[22]J. Ye, N. Lijima, F. Tashiro, S. Hagiwara, S. Yamada, Vibration of linear motion bearing, Proceedings of Spring JSPE Meeting 14 (1988) 199-200.
[23]H. Ohta, E. Hayashi, Vibration of linear guideway type recirculating linear ball bearings, Journal of Sound and Vibration 235(5) (2000) 847861.
[24]M. Schneider, Statisches und dynamisches Verhalten heim Einsatz Linearer Schienenf Uhrungen auf Wdlzlugerhasis im Werkzeugmaschinenhau, Carl Hanser Verlag, Miinchen, Wien, 1991.
[25]H. Ohta, Sound of linear guideway type recirculating linear ball bearings, Journal of Tribology 121(4) (1999) 678-685.
[26]B. Peeters, P. Guillaume, H. Van der Auweraer, B. Cauberghe, P. Verboven, J. Leuridan, Automotive and aerospace applications of the PolyMAX modal parameter estimation method, Proceedings of IMAC 22 (2004) 26-29.
[27]C.C. Wei, J.F. Lin, Kinematic Analysis of the Ball Screw Mechanism Considering Variable Contact Angles and Elastic Deformations, Journal of Mechanical DesignTransactions of the ASME 125 (2003) 717-733.
[28]T.E. Tallian, O.G. Gustafsson, Progress in Rolling Vibration Research and Control, ASLE Transactions 8 (1965) 195-207.
[29]F.P. Wardle, S.Y. Poon, Rolling Bearing Noise-Cause and Cure, Chartered Mechanical Engineer 30 (1983) 36-40.
[30]N. Aktürk, M. Uneeb, R. Gohar, The effects of Number of Balls and Preload on Vibrations Associated with Ball Bearings, Journal of Tribology 119 (1997) 747-753.
[31]J. Tian, M.H. Azarian, M. Pecht, Anomaly Detection Using Self-Organizing Maps-Based K-Nearest Neighbor Algorithm, Proceedings of European Conference of the Prognostics and Health Management Society (2014).
[32]T. Kohonen, The Self-Organizing Map, Proceedings of the IEEE 78(9) (1990) 1464-1480.
[33]J.B. Yu, L.F. Xi, Using an MQE Chart Based on a Self-Organizing Map NN to Monitor Out-of-Control Signals in Manufacturing Processes, International Journal of Production Research 46(21) (2008) 5907-5933.
[34]P. Kang, D. Birtwhistle, Condition assessment of power transformer onload tap changers using wavelet analysis and self-organizing map: field evaluation, IEEE Transactions on Power Delivery 18(1) (2003) 78-84.
[35]P. Mahalanobis, On the Generalized Distance in Statistics, Proceedings of the National Institute of Sciences (Calcutta) 2 (1936) 49–55.
[36]R. De Maesschalck, D. J.-R., D.L. Massart, The Mahalanobis Distance, Chemometrics and Intelligent Laboratory Systems 50(1) (2000) 1–18.
[37]L. Zhang, Q. Cao, J. Lee, F.L. Lewis, PCA-CMAC Based Machine Performance Degradation Assessment. Journal of Southeast University 21(3) (2005) 299–303.
[38]K.K. Nair, A.S. Kiremidjian, Time Series Based Structural Damage Detection Algorithm Using Gaussian Mixtures Modeling, Journal of Dynamic Systems, Measurement, and Control 129(3) (2007) 285–293.
[39]W. Liu, X. Zhong, J. Lee, L. Liao, M. Zhou, Application of a Novel Method for Machine Performance Degradation Assessment Based on Gaussian Mixture Model and Logistic Regression, Chinese Journal of Mechanical Engineering 24 (2011) 879-884.
[40]G.J. McLachlan, Discriminant analysis and statistical pattern recognition, John Wiley & Sons, Inc., 2004.
[41]G. Vachtsevanos, F. Lewis, M. Roemer, A. Hess, B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, 1st ed., John Wiley & Sons, New Jersey, 2006.
[42]A. Heng, S. Zhang, A.C.C. Tan, J. Mathew, Rotating machinery prognostics: state of the art, challenges and opportunities, Mechanical Systems and Signal Processing 23 (2009) 724–739.
[43]J.B. Ali, N. Fnaiech, L. Saidi, B. Chebel-Morello, F. Fnaiech, Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals, Applied Acoustics 89 (2015) 16–27.
[44]T. Brotherton, G. Jahns, J. Jacobs, D. Wroblewski, Prognosis of faults in gas turbine engines, in Aerospace Conference Proceedings (2000) 163–171.
[45]L. Zhang, R. Brincker, P. Andersen, An overview of operational modal analysis: major development and issues, in 1st International Operational Modal Analysis Conference (2005) 179190.
[46]P. Andersen, Identification of civil engineering structures using vector ARMA models, Ph.D. Thesis, Aalborg University, Denmark, 1997.
[47]I. Zaghbani, V. Songmene, Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis, International Journal of Machine Tools and Manufacture 49(12) (2009) 947-957.
[48]P. Guillaume, P. Verboven, S. Vanlanduit, H. Van der Auweraer, B. Peeters, A poly-reference implementation of the least-squares complex frequency-domain estimator, Proceedings of IMAC 21 (2003) 183-192.
[49]C. Devriendt, G. De Sitter, S. Vanlanduit, P. Guillaume, Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements, Mechanical Systems and Signal Processing 23 (2009) 621-635.
[50]C. Devriendt, P. Guillaume, Identification of modal parameters from transmissibility measurements, Journal of Sound and Vibration 314 (2008) 343-356.
[51]I.G. Araújo, J.E. Laier, Operational modal analysis using SVD of power spectral density transmissibility matrices, Mechanical Systems and Signal Processing 46 (2014) 129-145.
[52]R.J. Allemang, The modal assurance criterion–twenty years of use and abuse, Sound and vibration 37 (2003) 14-23.
[53]R.J. Allemang, D.L. Brown, A correlation coefficient for modal vector analysis, Proceedings of the 1st international modal analysis conference 1 (1982) 110-116.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top