跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/09 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭炫廷
研究生(外文):Hsuan-Ting Kuo
論文名稱:以聚乙二醇修飾之高分子微胞包覆超順磁氧化鐵奈米粒子於磁振造影導引之藥物與基因傳輸之研究
論文名稱(外文):Superparamagnetic Iron Oxide Nanoparticles Encapsulated in Polyethylene Glycol Modified Polymeric Micelles for MRI-Guided Drug and Gene Delivery
指導教授:黃義侑黃義侑引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:73
中文關鍵詞:高分子微胞磁振造影超順磁氧化鐵奈米粒子基因療法聚乙烯亞胺聚乙二醇T2弛緩率
外文關鍵詞:polymeric micellesmagnetic resonance imaging (MRI)superparamagnetic iron oxide nanoparticles (SPIONs)gene therapypolyethylenimine (PEI)polyethylene glycol (PEG)T2 relaxivity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去幾年來,癌症已經成為世界上最具破壞性的疾病之一。而到目前為止,癌症的治療大多是靠手術切除、化療、或是放射性療法。然而這些治療方式的成功率不高,而且也有不少副作用。為了增加癌症治療的效率,我們希望能發展一種多功能性的高分子微胞,同時具備藥物傳輸、基因治療與影像輔助的功能。這種高分子微胞由疏水性的硬脂酸內核與帶正電的聚乙烯亞胺外殼組成,而在聚乙烯亞胺外會接枝聚乙二醇。疏水性內核用來包覆超順磁氧化鐵奈米粒子,它是一種磁振造影的對比劑,具有很高的T2弛緩率及敏感度。而在親水性外殼的部份,聚乙烯亞胺將當作基因傳輸的載體,而聚乙二醇則是為了增加微胞在血液中循環的時間。

在此研究中,我們以TNBS assay、核磁共振光譜與穿透式電子顯微鏡證實成功製備出聚乙二醇-聚乙烯亞胺-硬脂酸微胞。利用DNA retardation assay則顯示出此微胞具有良好的DNA吸附能力。而在包覆超順磁氧化鐵奈米粒子的部份,實驗中以甲苯為溶劑,將氧化鐵溶液加到微胞溶液中,然後在4℃以5瓦的功率用超音波探針進行包覆。由粒徑分析儀測量後,得到直徑200奈米(PDI = 0.2)的微胞,另外,藉由穿透式電子顯微鏡則可以看到微胞內部包覆著許多氧化鐵粒子。經過原子吸收光譜的分析,則可得知此方法有60%的包覆率。將本樣品進行磁振造影的掃描分析後則發現,自行製備的氧化鐵微胞相較已上市的Resovist®有更高的T2弛緩率。此外,在活體實驗中,經過尾靜脈注射後的小鼠,其肝、腎、攝護腺的T2加權影像都有明顯的加深。由這些實驗結果可以說明,此微胞可以作為一種有效的磁振造影導引之藥物與基因傳輸系統。


Over the past several years, cancer has become one of the most devastating diseases worldwide. Nowadays, cancer treatment is much dependent on surgery, chemotherapy and radiotherapy. However, these methods were less successful and had major side effects. In order to improve the efficiency of cancer treatment, we focus on the development of multifunctional polymeric micelles for drug delivery, gene therapy and diagnostic imaging application. The developed polymeric micelles were composed of a hydrophobic stearic acid (SA) core and a positively charged polyethylenimine (PEI) outer shell which was modified by polyethylene glycol (PEG). The hydrophobic core served as a reservoir for superparamagnetic iron oxide nanoparticles (SPIONs) which is a magnetic resonance imaging (MRI) contrast agent with remarkably high T2 relaxivity and sensitivity. Of the hydrophilic shell, the cationic polymer PEI was used for non-viral transfection and PEG was used for prolonging blood circulation time.

In this study, we have successfully developed PEG-PEI-SA micelles confirmed by TNBS assay, nuclear magnetic resonance (NMR), transmission electron microscopy (TEM). And the DNA retardation assay demonstrated that PEG-PEI-SA micelles showed good DNA binding efficiency. The encapsulation was performed by addition of SPIONs in toluene to PEG-PEI-SA micelles solution, followed by sonication at 5 W for 1 min at 4℃. Dynamic light scattering (DLS) measurement revealed ~200nm particles (PDI = 0.2) were formed, while TEM analysis demonstrated that clusters of SPIONs were encapsulated in the hydrophobic core. And the encapsulation efficiency was about 60% which was analyzed by atomic absorption spectrometry (AAS). MRI scanning of the samples revealed that the SPIONs-loaded micelles had higher T2 relaxivity than Resovist®. In addition, in vivo study showed that the liver, kidney and prostate turned dark on T2 weighted images after tail vein injection. These results indicated that the SPIONs-loaded micelles can serve as an efficient image-guided drug and gene delivery system.


致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄IX
第一章 序論 1
1.1 奈米粒子與醫學 1
1.2 癌症 2
1.3 癌細胞及其環境 3
1.4 奈米粒子與癌症治療 6
1.5 微胞(micelles)的組成與特性 7
1.6 基因療法(Gene therapy) 9
1.7 磁振造影(Magnetic Resonance Imaging; MRI) 12
1.8 研究動機與目的 15
第二章 實驗材料與方法 17
2.1 實驗藥品 17
2.2 實驗儀器 18
2.3 合成聚乙烯亞胺-硬脂酸微胞(PEI-SA micelles) 20
2.4 在聚乙烯亞胺-硬脂酸微胞表面修飾聚乙二醇(PEG-PEI-SA micelles) 21
2.5 粒徑分析(Z-Average)與表面電位(zeta potential)分析 23
2.6 核磁共振光譜(1H NMR)分析 23
2.7 質體DNA之大量分離 23
2.8 DNA吸附能力分析(DNA Retardation Assay) 26
2.9 包覆超順磁氧化鐵奈米粒子(SPIONs) 27
2.10 比較微胞在PEG修飾與SPIONs包覆前後對細胞增生的影響 29
2.11 細胞吞噬能力分析 32
2.12 MRI弛緩率測量 34
2.13 動物實驗 34
第三章 結果與討論 36
3.1 合成聚乙烯亞胺-硬脂酸微胞(PEI-SA micelle) 36
3.2 在微胞表面修飾聚乙二醇 37
3.3 聚乙二醇-聚乙烯亞胺-硬脂酸微胞的粒徑與表面電位 40
3.4 核磁共振光譜(1H NMR)分析 41
3.5 DNA吸附能力分析 44
3.6 包覆超順磁氧化鐵奈米粒子 45
3.7 穿透式電子顯微鏡分析 52
3.8 比較微胞在PEG修飾與SPIONs包覆前後對細胞增生的影響 54
3.9 細胞吞噬能力分析 59
3.10 MRI弛緩率測量 64
3.11 動物實驗 66
第四章 結論 70
第五章 參考文獻 71


[1] T.C. Yih, C. Wei, Nanomedicine in cancer treatment. Nanomedicine: Nanotechnology, Biology and Medicine 1 (2005) 191-192.
[2] O.C. Farokhzad, R. Langer, Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews 58 (2006) 1456-1459.
[3] W.H. Suh, K.S. Suslick, G.D. Stucky, Y.-H. Suh, Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology 87 (2009) 133-170.
[4] E.S. Kawasaki, A. Player, Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: Nanotechnology, Biology and Medicine 1 (2005) 101-109.
[5] D.A. Groneberg, M. Giersig, T. Welte, U. Pison, Nanoparticle-based diagnosis and therapy. Curr. Drug Targets 7 (2006) 643-648.
[6] P. Boyle, B. Levin, World Cancer Report, IARC Nonserial Publication, (2008).
[7] 行政院衛生署, 97年死因統計統計表. (2009).
[8] S.K. Hobbs, W.L. Monsky, F. Yuan, W.G. Roberts, L. Griffith, V.P. Torchilin, R.K. Jain, Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America 95 (1998) 4607-4612.
[9] F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D.A. Berk, V.P. Torchilin, R.K. Jain, Vascular-permeability in a human tumor xenograft - molecular-size dependence and cutoff size. Cancer Res. 55 (1995) 3752-3756.
[10] P. Couvreur, C. Vauthier, Nanotechnology: Intelligent design to treat complex disease. Pharmaceutical Research 23 (2006) 1417-1450.
[11] V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4 (2005) 145-160.
[12] D. Peer, J.M. Karp, S. Hong, O.C. FaroKhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2 (2007) 751-760.
[13] B. Haley, E. Frenkel, Nanoparticles for drug delivery in cancer treatment. Urol. Oncol.-Semin. Orig. Investig. 26 (2008) 57-64.
[14] L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83 (2007) 761-769.
[15] J.B. Wolinsky, M.W. Grinstaff, Therapeutic and diagnostic applications of dendrimers for cancer treatment. Advanced Drug Delivery Reviews 60 (2008) 1037-1055.
[16] V.P. Torchilin, Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research 24 (2007) 1-16.
[17] Y. Matsumura, K. Kataoka, Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Science 100 (2009) 572-579.
[18] D. Sutton, N. Nasongkla, E. Blanco, J.M. Gao, Functionalized micellar systems for cancer targeted drug delivery. Pharmaceutical Research 24 (2007) 1029-1046.
[19] N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.-F. Chin, A.D. Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, mri-ultrasensitive drug delivery systems. Nano Letters 6 (2006) 2427-2430.
[20] J.-P. Gillet, B. Macadangdang, R.L. Fathke, M.M. Gottesman, C. Kimchi-Sarfaty, The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods in Molecular Biology (2009) 5-54.
[21] U. Lungwitz, M. Breunig, T. Blunk, A. Gopferich, Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60 (2005) 247-266.
[22] S. Lehrman, Virus treatment questioned after gene therapy death. Nature 401 (1999) 517-518.
[23] J.Y. Sun, V. Anand-Jawa, S. Chatterjee, K.K. Wong, Immune responses to adeno-associated virus and its recombinant vectors. Gene Therapy 10 (2003) 964-976.
[24] A. von Harpe, H. Petersen, Y.X. Li, T. Kissel, Characterization of commercially available and synthesized polyethylenimines for gene delivery. Journal of Controlled Release 69 (2000) 309-322.
[25] J.P. Behr, Gene-transfer with synthetic cationic amphiphiles - prospects for gene-therapy. Bioconjugate Chemistry 5 (1994) 382-389.
[26] C. Plank, K. Mechtler, F.C. Szoka, E. Wagner, Activation of the complement system by synthetic DNA complexes: A potential barrier for intravenous gene delivery. Human Gene Therapy 7 (1996) 1437-1446.
[27] S.C. Bushong, Magnetic resonance imaging: Physical and biological principles 2 ed., St. Louis: Mosby-Year Book, 1996.
[28] M.G. Lentschig, P. Reimer, U.L. Rausch-Lentschig, T. Allkemper, M. Oelerich, G. Laub, Breath-hold gadolinium-enhanced MR angiography of the major vessels at 1.0 T: Dose-response findings and angiographic correlation. Radiology 208 (1998) 353-357.
[29] T. Grobner, Gadolinium - a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol. Dial. Transplant. 21 (2006) 1104-1108.
[30] H. Ai, C. Flask, B. Weinberg, X. Shuai, M.D. Pagel, D. Farrell, J. Duerk, J.M. Gao, Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Advanced Materials 17 (2005) 1949-+.
[31] T. Islam, L. Josephson, Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark. 5 (2009) 99-107.
[32] P. Arnold, J. Ward, D. Wilson, J. Ashley Guthrie, P.J. Robinson, Superparamagnetic iron oxide (SPIO) enhancement in the cirrhotic liver: a comparison of two doses of ferumoxides in patients with advanced disease. Magnetic Resonance Imaging 21 (2003) 695-700.
[33] M. Talelli, C.J.F. Rijcken, T. Lammers, P.R. Seevinck, G. Storm, C.F. van Nostrum, W.E. Hennink, Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug Delivery. Langmuir 25 (2009) 2060-2067.
[34] S.-J. Cheong, C.-M. Lee, S.-L. Kim, H.-J. Jeong, E.-M. Kim, E.-H. Park, D.W. Kim, S.T. Lim, M.-H. Sohn, Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. International Journal of Pharmaceutics 372 (2009) 169-176.
[35] M.C. Chen, H.W. Tsai, C.T. Liu, S.F. Peng, W.Y. Lai, S.J. Chen, Y. Chang, H.W. Sung, A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs. Biomaterials 30 (2009) 2102-2111.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top