跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳燦錫
研究生(外文):Tsann-shyi Chern
論文名稱:2205雙相不銹鋼A-TIG銲道特性與腐蝕行為之研究
論文名稱(外文):Study of characteristics and corrosion of grade 2205 duplex stainless steel A-TIG welds
指導教授:蔡顯榮蔡顯榮引用關係
指導教授(外文):Hsien-Lung Tsai  
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:107
中文關鍵詞:A-TIG銲接雙相不銹鋼氧化物助銲劑
外文關鍵詞:Activated TIG weldingduplex stainless steeloxide flux
相關次數:
  • 被引用被引用:1
  • 點閱點閱:700
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的主要探討A-TIG銲接對2205雙相不銹鋼銲道外觀、銲道形態、銲件變形、顯微組織、機械強度及耐腐蝕性等影響。實驗材料採用2205雙相不銹鋼,助銲添加劑選用TiO2、MnO2、SiO2、MoO3及Cr2O3等氧化物粉末,銲接方法採用不加填料金屬之氣護鎢極電弧銲進行bead-on-plate實驗。實驗結果顯示添加MoO3、MnO2助銲劑將可得到較佳之銲道外觀,而添加SiO2助銲劑則可達到完全熔透之最佳銲道穿深。銲件角變形量以未添加助銲劑最大,而添加SiO2助銲劑銲件角變形量最小。此外添加助銲劑將會提高氬銲電弧電壓,亦即提高單位銲道長度熱輸入量,進而提高2205雙相不銹鋼銲道γ沃斯田相組織含量。添加助銲劑對2205雙相不銹鋼A-TIG銲道硬度並無顯著影響。此外,腐蝕試驗結果顯示,添加助銲劑之銲道腐蝕率較未添加助銲劑者低,亦即助銲添加劑可有效提高2205雙相不銹鋼A-TIG銲道耐腐蝕性。
The purpose of this study is to investigate the effects of activating flux addition on the weld penetration, weld appearance, weld morphology, angular distortion, welding microstructures, welded mechanical properties, and corrosion behavior of 2205 duplex stainless by autogenous A-TIG process. A bead-on-plate performed on duplex stainless plates using TiO2, MnO2, SiO2, MoO3, and Cr2O3 as an activating flux. The results shows a good appearance and morphology of weld can be obtained by using either MoO3 or MnO2 flux. The weld with the full penetration and the least angular distortion can be obtained by using SiO2 flux, in contrast to the weld without using activation flux having the shallow penetration and the largest angular distortion. In addition, the weld with activating flux is beneficial to the heat constriction in the welding arc plasma, the increase of γ content in the weld metal, and the corrosion resistance. The hardness of the weld metal does not affect by the activating flux.
目 錄
中文摘要………….………………………...………………………………...I
英文摘要……………………………………………………………………Ⅱ
誌謝…………………………………………………….…..………………III
目錄………………………….….……...…………………..………...…….Ⅴ
表目錄…………………………………..………………..…...…..………..Ⅷ
圖目錄…………………………………….………………....…..………...Ⅸ
第一章 緒論…………………...….………….….……………....………..….1
第二章 文獻回顧………………………….………….………….….……….5
2.1雙相不銹鋼….……..………….…..……..………..…………….5
2.1.1雙相不銹鋼銲接性……..………..…….……………………………6
2.1.2不銹鋼中之肥粒相含量計算……..………….………..……………7
2.2氣護鎢極電弧銲接原理…….…………..……..………....……………..9
2.2.1氣護體鎢極電弧銲接優劣性……….……...........………………….13
2.2.2銲接電弧……...……..…………………..….………..…………….15
2.2.2銲接電弧結構………………….........................………….……….15
2.2.4銲接電流性質..…………………………….…………...….……….19
2.2.5遮護氣體…….…………………………….……...………….…….21
2.2.6鎢棒種類………………………………………….......……………22
2.3助銲劑……………………..………....……………………………….…25
2.3.1活性助銲劑……………….……….………………………….........25
2.3.2助銲劑量子力學理論………………...……….….....……………..29
2.3.3助銲劑粉體化學反應………………...……….….....……………..31
2.4 A-TIG銲接提高銲道熔深機制...……….….....……………….........32
2.5腐蝕行為理論………………...……….….....……………………….34
2.5.1腐蝕………..……..……………...……….….....………………......34
2.5.2孔蝕…………………………...……….….....……………………..34
2.5.3腐蝕測定理論………………...……….….....………………..........35
2.5.4腐蝕速率測試法……………...……….….....……………………..37
2.5.5雙相不銹鋼抗腐蝕性………………...……….….....……………..41
第三章 實驗方法與步驟.………...…………………………………….......44
3.1實驗流程……………………...……………………………………….44
3.2實驗材料準備…………………………………….……..…………….45
3.3活性助銲劑配製…………………………..……….………………….45
3.4 A-TIG 銲接實驗………..…………..………..………...………….......45
3.5角變形量測實驗.………...……..………..………......…………………48
3.6肥粒相含量量測….……….......………..…….………………………...51
3.7金相實驗………………………………………………………….........51
3.8硬度試驗………………………………………………………….........55
3.9銲道界面分析…………………………………………………….........55
3.10電化學實驗…………………………………………………………...58
3.10.1 3.5% NaCl水溶液………………………………………………...58
3.10.2 3.5% NaCl水溶液添加1N HCl……………………………......58
3.11浸漬實驗………………………………………………………………58
第四章 結果與討論………............………..…………………………….....61
4.1 2205雙相不銹鋼金相組織觀察………………...…….……………....61
4.2助銲添加劑對銲道外觀影響…………………...…….……………….63
4.3 A-TIG銲接對銲道形態影響…………….…….…..……………….....65
4.4添加助銲劑對A-TIG銲道形成機制影響….…..…..............................67
4.4.1銲池對流效應…………………………………………………….....67
4.4.2電漿電弧效應…………………………………………………….....70
4.5 A-TIG銲接對2205雙相不銹鋼銲道α/γ含量影響...…......................77
4.6 A-TIG銲接對2205雙相不銹鋼銲件變形影響….………………......81
4.7 A-TIG銲接對2205雙相不銹鋼銲件硬度試驗分析.……...................81
4.8 A-TIG 銲接對2205 雙相不銹鋼銲道耐腐蝕性影響………………..81
4.8.1電化學循環動態極化曲線……………………………………….....81
4.8.2浸漬實驗結果…………………………………………………….....89
第五章結論…………...….……....……………………………………….....94
第六章未來發展…...…………….……………………………………….....96
參考文獻……..…………………..…………………………………….........97
作者簡介…………………………………………………………………...106

表目錄

表2.1 TIG電流類型之特性………………..………………..……………..20
表2.2 鎢電極與適用電流之關係……..………………..…….………........22
表2.3 特殊鎢電極銲接電流之極限值…………..……….………..............23
表2.4常用之不銹鋼氧化物型助銲劑……………..………………….........27
表2.5常用之不銹鋼鹵化物型助銲劑………………..………………........30
表3.1 2205雙相不銹鋼成份表(wt%)………………………………………46
表3.2 2205雙相不銹鋼銲接參數表…………………………………..........49
表4.1銲道氧元素含量EPMA分析(Mass%)……..………………..………76
表4.2 各類助銲劑銲道電化學極化數據(3.5 wt %NaCl)…………............85
表4.3 各類助銲劑銲道電化學極化數據(3.5 wt %NaCl +HCl)………......87
表4.4 助銲添加劑對銲道腐蝕速率影響(3.5wt%NaCl)……………..........92
表4.5 助銲添加劑對銲道腐蝕速率影響(3.5wt%NaCl+1NHCl)…............93




圖目錄

圖2.1 雙相不銹鋼恆溫析出C型曲線及合金添加影響…….……………..8
圖2.2 Schaeffer Diagram………….………………………………………...10
圖2.3 Delong Diagram……….………………………………………….......11
圖2.4 WRC-l992 Constitution Diagram…….……………………………....12
圖2.5 氣體鎢極電弧銲接法示意圖……………………………………......14
圖2.6 電弧形成示意圖…………….…………………………………….....16
圖2.7 銲接電弧結構與電壓降關係……......................................................18
圖2.8 元素週期表…………………………………………………………..28
圖2.9 各種孔蝕剖面形態…………………………………………………..36
圖2.10 典型Evans diagram示意圖….…………………..…………………39
圖2.11 電極電位與外加電流曲線…………………………………............40
圖2.12 雙相不銹鋼與沃斯田鐵型不銹鋼在不同濃度的氯化物環境中
CPT曲線………………….………………………………………..43
圖3.1 SCE YAT-400A定電流式氬銲機及其配件………………………....46
圖3.2 A-TIG銲接示意圖……………………………………………….......47
圖3.3 銲件角變形量測(a)量測位置(b)平均垂直位移量…………..50
圖 3.4 Feritscope FMP30型肥粒相測定儀…….………………………......52
圖 3.5 Olympus SZ61TR實體顯微鏡.…………………..……………….....53
圖3.6 Olympus BX41M光學顯微鏡……….…………………………........54
圖3.7 銲道形態量測示意圖.…………………..…………………………...56
圖3.8 Mitutoyo HM-113型微硬度試驗機………………………………....56
圖 3.9 電子探束微分析儀…………………………………………............57
圖3.10電化學腐蝕實驗裝置.………………………………………...........59
圖4.1 2205雙相不銹鋼母材顯微組織(a)LD方向(b)RD方向……………62
圖4.2 2205雙相不銹鋼銲道顯微組織(a)without flux (b)with SiO2flux
…………………………………………………………………………….....62
圖4.3 2205雙相不銹鋼HAZ顯微組織(a)without flux (b)with SiO2flux
……………………………………………………………………………….62
圖4.4 A-TIG銲接對2205雙相不銹鋼銲道外觀影響………….…….......64
圖4.5 A-TIG銲接對2205雙相不銹鋼銲道形態影響..……………..........66
圖4.6銲道熔融情況與液態金屬流動狀態關係…….…….……………....68
圖4.7電漿電弧收縮效應示意圖…………………………………………..71
圖4.8助銲劑對電漿電弧與陽極斑點效應影響…………………………..72
圖4.9助銲添加劑對氬銲電弧電壓影響…….…………………………….74
圖4.10銲道氧元素分佈圖………………………………………………....76
圖 4.11 2205雙相不銹鋼銲道α/γ含量……………………………………..78
圖4.12 2205雙相不銹鋼銲道角變形之影響.……………………………..80
圖4.13 2205雙相不銹鋼銲道硬度影響.…………………………………..82
圖4.14電化學循環動態極化曲線圖............................................................83
圖4.15 3.5 wt %NaCl溶液中電化學循環動態極化曲線圖........................86
圖4.16 3.5 wt %NaCl溶液中電化學循環動態極化曲線局部
放大圖…………………………………………………………………….86
圖4.17 3.5 wt %NaCl +HCl溶液電化學循環動態極化曲線圖…………..88
圖4.18 3.5 wt %NaCl +HCl溶液中電化學循環動態極化曲線
局部放大圖…………………………………………………………….....88
圖4.19 2205雙相不銹鋼3.5%NaCl銲道浸漬試驗
(a) with SiO2 flux (b)with TiO2flux…………………………………….....90
圖4.20 2205雙相不銹鋼3.5%NaCl+1NHCl銲道浸漬試驗………………90
參考文獻

1. H.Y. Huang, S.W. Shyu, K.H. Tseng, C.P. Chou, “ Evaluation of TIG flux welding on the characteristics of stainless steel”, Science and Technology of Welding and Joining, Vol. 10, No. 5, pp. 566-573 (2005).
2. S.W. Shyu, H.Y. Huang, K.H. Tseng, C.P. Chou, “Study of the performance of stainless steel A-TIG welds”, Journal of Materials Engineering and Performance, Vol. 17, No. 2, pp. 197-201 (2008).
3. H. Fujii, T. Sato, S.P. Lu, K. Nogi, “ Development of an advanced A-TIG (AA-TIG) welding method by control of Marangoni convection”, Materials Science and Engineering A, Vol. 495, pp. 296-303 (2008).
4. H.Y. Huang, S.W. Shyu, K.H. Tseng, C.P. Chou, “Effects of the process parameters on austenitic stainless steel by TIG-flux welding”, Journal of Materials Science and Technology, Vol. 22, No. 3, pp. 367-374 (2006).
5. S.P. Lu, D.Z. Li, H. Fujii, K. Nogi, “Time dependant weld shape in Ar-O2 shielded stationary GTA welding”, Journal of Materials Science and Technology, Vol. 23, No. 5, pp. 650-654 (2007).
6. S. Leconte, P. Paillard, P. Chapelle, G. Henrion, J. Saindrenan, “Effect of oxide fluxes on activation mechanisms of tungsten inert gas process”, Science and Technology of Welding and Joining, Vol. 11, No. 4, pp. 389-397, (2006).
7. Q.M. Li, X.H. Wang, Z.D. Zou, J. Wu, “Effect of activating flux on arc shape and arc voltage in tungsten inert gas welding”, Transactions of Nonferrous Metals Society of China, Vol. 17, pp. 486-490 (2007).
8. L.M. Liu, Z.D. Zhang, G. Song, L. Wang, “Mechanism and microstructure of oxide fluxes for gas tungsten arc welding of magnesium alloy”, Metallurgical and Materials Transactions A,; Vol. 38, No. A, pp. 649-658 (2007).
9. Y.L. Xu, Z.B. Dong, Y.H. Wei, C.L. Yang, “Marangoni convection and weld shape variation in A-TIG welding process”, Theoretical and Applied Fracture Mechanics, Vol. 48, pp. 178-186 (2007).
10. Z.D. Zhang, L.M. Liu, Y. Shen, L.Wang, “Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux”, Materials Characterization, Vol. 59, pp. 40-46 (2008).
11. L. Liu, H. Sun, “Study of flux assisted TIG welding of magnesium alloy with SiC particles in flux”, Materials Research Innovations, Vol. 12, No. 1, pp. 47-51 (2008).
12. H.Y. Huang, “Effects of shielding gas composition and activating flux on GTAW weldments”, Materials and Design, Vol. 30, pp. 2404-2409 (2009).
13. S.M. Gurevich, V.N. Zamkov, N.A.Kushnirenko, “Improving the penetration of titanium alloys when they are welded by argon tungsten arc process”, Avtomaticheskaya Svarka, Vol. 9, pp. 1-4 (1965).
14. W.Lucas and D.S. Howse, “Activating flux - increasing the performance and productivity of the TIG and plasma processes”, Weld. Met. Fabr., Vol. 64, No. 1, pp. 11-17 (1996).
15. D.S. Howse and W. Lucas, “Investigation into arc constriction by active fluxes for tungsten inert gas welding”, Sci. Technol. Weld. Joining, Vol. 5, No. 3, pp. 189-193 (2000).
16. T. Paskell, C. Lundin, and H. Castner, “GTAW flux increases weld joint penetration”, Weld. J., Vol. 76, No. 4, pp. 57-62 (1997).
17. S.M. Gurevich. and V.M. Zamkov, “Welding titanium with a nonconsumable electrode using fluxes”, Avtomaticheskaya Svarka, Vol. 12, pp. 13-16 (1966).
18. D. Troy, Paskell, “Gas tungsten arc welding flux”, United State Patent 5804792, (1998).
19. M Marya, G.R. Edwards., “Chloride contributions in flux-assisted GTA welding of magnesium alloys”, Welding Journal, Vol. 81, No. 12, 291-298 (2002).
20. J. Paulo, Modenesi, R. Eustáquio Apolinário, Iaci M. Pereira, “TIG welding with single-component flux”, J. Mater. Process. Technol., , Vol. 99, PP. 260-265 (2000).
21. P.C. Anderson and R. Wiktorowicz, “Improving productivity with A-TIG welding”, Weld. Met. Fabr., Vol. 64, No. 3, pp. 108-109 (1996).
22. M. Miura, M. Koso, T. Kudo, H. Tsuge. “The effect of nickel and nitrogen on the microstructure and corrosion resistance of duplex stainless steel weldment”, Welding International,; Vol.4, No. 3, pp. (200-206) 1990.
23. M.B. Cortie, J.H. Potgieter, “The effect of temperature and nitrogen content on the partitioning of alloy elements in duplex stainless steels”, Metallurgical Transactions, Vol. 22A, pp. 2173-2179 (1991).
24. Z. Sun, M. Kuo, I. Annergren, D..Pan, “Effect of dual torch technique on duplex stainless steel welds”, Materials Science and Engineering A; Vol. 356, pp. 274-282 (2003).
25. N. Sridhar, J. Kolts, L.H. Flashe, “A duplex stainless steels for chloride environments”, Journal of Metals,Vol. 37, No. 3,pp. 31-35 (1985).
26. S.T. Tsai, K.P. Yen, H.C. Shih, “The embrittlement of duplex stainless steel in sulfide-containing 3.5 wt% NaCl solution”, Corrosion Science; Vol. 40, pp. 281-295 (1998).
27. Iris Alvarez-Armas., “Duplex stainless steels: brief history and some recent alloys”, Recent Patents on Mechanical Engineering, Vol. 1, pp. 51-57 (2008).
28. W.C. Liu, P.W. Liu, J.K. Wu, “Hydrogen transport and degradation of a commercial duplex stainless steel”, Corrosion Science, Vol. 44, pp. 1783
(2002).
29. John C. Lippold and Damian J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steels”, A John Wiley & Sons,Inc.,Publication, pp.231-263 (2005).
30. 黃義順,「雙相不銹鋼及其銲件低週次疲勞與腐蝕特性」,碩士論文,國立台灣海洋大學,基隆 (2003)。
31. H. Sieurin, R. Sandström, “Sigma phase precipitation in duplex stainless steels 2205”, Materials Science and Engineering, A444, pp. 271-276 (2007).
32. U. Fekken, L.Van Nassau, M.Vermey, “Hydrogen induced cracking in austenitic ferritic stainless steel”, Proc. Duplex stainless steels'86 conference, pp. 268-279 (1986).
33. H.Y. Liou, R.I. Hsieh, W.T. Tsai, “Microstructure and stress corrosion cracking in simulated heat-affected zones of duplex stainless steels” Corrosion Science, 44, pp. 2841-2856 (2002).
34. J. Charles, “Super duplex stainless steels: structure and properties”, Duplex stainless steels ‘91 ,Vol. 1, pp.3-48 (1991).
35. W. Przetarkiewicz, R. Tomczak, “Some aspects of the weldability of ferritic-austenitic steels of duplex and superduplex grades”,Welding International, Vol. 9, No. 10, pp. 781 (1995).
36. 黃和悅,「不銹鋼TIG-Flux銲接技術之研究」,博士論文,國立交通大學,新竹 (2005).
37. D.L Olson, “Prediction of austenitic weld metal microstructure and properties”, Weld. J., Vol. 64, No. 10, pp. 281-295 (1985).
38. D.J. Kotecki and T.A. Siewert, “WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram”, Weld. J., Vol. 71, No. 5, pp.171-178 (1992).
39. W.D. Strippelmann and R. Brenner, “Guide to Welding-Oversea Transparences and Work Sheets for Vocational Training”, DVS-Verlag GmbH, Düsseldorf, Germany, (1988).
40. 錢在中,焊接技術手冊,山西科學技術出版社,(1999)。
41. H.B. Cary, “Modern Welding Technology”, Fourth Edition, Prentice Hall, Upper Saddle River, New Jersey, (1998).
42. 姜煥中,電弧焊及電渣焊,機械工業出版社,(1988)。
43.“Welding handbook”, Vol. 1, American Welding Society, (1987).
44. F. Larry Jeffus: “Welding: principles and applications”, Delmar Publishers, (1992).
45. 王振欽,銲接學,高立圖書股份有限公司,(1997)。
46. H.Y. Huang, S.W. Shyu, K.H. Tseng and C.P. Chou, Journal of Material Science and Engineering, Vol. 36, No. 1, pp.23-30 (2004).
47. H.Y. Huang, S.W. Shyu, K.H. Tseng and C.P. Chou, “Effect of A-TIG Welding on the morphology of stainless steel welds”, 7th International Conference on Trends in Welding Research Conference , Pine Mountain, Georgia, U.S. , (2005).
48. S.W. Shyu, H.Y. Huang, K.H. Tseng and C.P. Chou, “The mechanism of flux assisted arc Welding in austenitic stainless steel welds” The Conference on Materials Science & Technology, Pittsburgh, PA, U.S., (2005).
49. S.W. Shyu, H.Y. Huang, K.H. Tseng and C.P. Chou, “Sulfide contributions in A-TIG Welding of austenitic stainless steel welds” The International Conference on Advanced Welding/Joining Technology for 21th Century , Dalian, China, (2005).
50. 黃和悅、徐享文、林國書、曾光宏、周長彬,銲接與切割,第十 三卷,第四期,第49-55頁 (2003)。
51. 黃和悅、徐享文、曾光宏、周長彬,「活性助銲劑對沃斯田鐵不銹鋼銲道形態與銲件變形之影響」,中國機械工程學會第二十屆全國學術研討會,台北,(2003)。
52. C.P. Chou, S.W. Shyu, H.Y. Huang, K.H. Tseng and T.C. Yang “Welding \ flux for use in arc-welding of stainless steel, method of welding stainless steel members using the welding flux”, 7,052,559, United States.
53. M.Q. Jofnson and C.M. Fountain, “Penetration” flux, US6,664,508, United States.
54. T.D. Paskell, “Gas tungsten arc welding flux”, 5,804,792, United States.
55. 黃榮茂、林聖富、王禹文、楊得仁,化學化工大辭典,曉園出版社,(2000)。
56. 周怡馨、曾光宏、曾秉鈞,「不銹鋼高熔深氬銲助銲劑介紹」銲接與切割,第十六卷第四期,第39-45頁,(2006)。
57. C.R. Heiple, J.R. Roper, “Effect of Selenium on GTAW Fusion Zone Geometry”, Welding Journal, Vol. 60,No. 8, pp.143-145 (1981).
58. C.R. Heiple, J.R. Roper, “Mechanism for Minor Element Effect on GTA Fusion Zone Geometry”, Welding Journal, Vol. 61, No. 4, pp. 97-102 (1982).
59. C.R. Heiple, J.R. Roper, R.T. Stagner, R.J. Aden, “Surface Active Element Effect on the Shape f GTA, Laser, and Electron Beam Welds”, Welding Journal, Vol. 62, No. 3, pp. 72-77 (1983).
60. C.R. Heiple, P. Burgardt, “Effect of SO2 Shielding Gas Addition on GTA Weld Shape”, Welding Journal, Vol. 64, No. 6, pp.159-162 (1985).
61. P. Burgardt, C.R. Heiple, “Interaction between Impurities and Welding Variables in Determining GTA Weld Shape,” Welding Journal, Vol. 65, No. 6, pp. 150-155 (1986).
62. A.G. Simonik, “Effect of Contraction of the Arc Discharge Upon the Introduction of Electro-Negative Elements”, Welding Production (English translation of Svarochnoe Proizvodstvo), Vol. 23, No.3, pp. 68-71 (1976).
63. J.J. Lowke, M.Tanaka, M. Ushio, “Mechanisms Giving Increased Weld Depth Due to a Flux”, Journal of Physics D: Applied Physics, Vol. 38, No. 18, pp.3438-3445 (2005).
64. M.M. Savitskii, G.I. Leskov , “Mechanizm vliyamia dzlektrootrida tepvnykh zpementov na proplavlauchyu sposovnosti luqi s voliframoym katodm Avtom,” Avtom. Svarka., Vol. 9, pp.17 (1980).
65. Yuzhen Zhao et al., “The Study of Surface-Active Element Oxygen on Flow Patterns and Penetration in A-TIG Welding”, Metallurgical and Material Transaction B, Vol. 37B, pp. 485-493 (2006).
66. 蒲志桔,「亞硝酸鈉對不銹鋼與鎳超合金之腐蝕抑制性研究」,碩士論文,國立台灣海洋大學,基隆 (2003)。
67. R. B. Hutehings, A. Turnbull and A.T. May, Scripta, Metallurgica et Materials, Vol. 25, pp.2657 (1991).
68. D.A. Jones, “Principles And Prevention of Corrosion”, 2nd ed., Prentice Hall, (1996).
69. T. Laitinen,” Localized corrosion of stainless steel in chloride, sulfate and thiosulfate containing environments”, Corrosion Science, Vol. 42, No.3, pp. 421-441 (2000).
70. P. Ernst, N.J. Laycock, M.H. Moayed, R.C. Newman, “The mechanism of lacy cover formation in pitting”, Corrosion Science, Vol. 39, pp. 1133-1136 (1997).
71. 魏明德,「鈦合金及其銲件之低週期疲勞性質與機制」, (2002)。
72. Princeton Applied Research Applied Instruments Group, “Basics of Corrosion Measurements”, Application Note Corrosion 1, pp. 2-12 (1982).
73. F. Mansfeld, “Recording and Analysis of AC Impedance Data for Corrosion Studies, I. Background and Methods of Analysis”, Corrosion, Vol. 37, pp. 301-307 (1981).
74. F. Mansfeld, M.W. Kendig and S. Tsai, “Recording and Analysis of AC Impedance Data for Corrosion Studies, II. Experimental Approach and Results”, Corrosion, Vol. 38, pp. 570-580 (1982).
75. G.W. Walter, “A Review of Impedance Plots Used for Corrosion Performance Analysis of Painted Metals”, Corrosion. Science, Vol. 26, pp. 681-704 (1986).
76. A.U. Malik, N.A. Siddiqi, “The effect of dominant alloy additions on the corrosion behavior of some conventional and high alloy stainless steels in seawater”, Corrosion Science, Vol. 37, No. 10, pp. 1521-1535 (1995).
77. K. Hladky, L.M. Callow and J.L. Dawson, “Corrosion Rate from Impedance Measurements: An Introduction”, Br. Corrosion J., Vol. 15, pp. 20-25 (1980).
78. Metals Handbook, Eight Edition, Vol. 9, pp. 69 (1977).
79. 柯賢文,腐蝕及其防制,全華科技圖書股份有限公司,(2006)。
80. A. J. Sedriks, “Corrosion of Stainless Steels”, John Wiley & Sons, New York, pp. 88 (1979).
81. G. J. Theus and R. W. Staehl, Stress Corrosion Cracking and Hydrogen Embrittment of Fe-Bases Alloys, pp. 845 (1978).
82. F. Bonollo, A. Tiziani, Welding International, Vol. 10, No. 2, pp.124 (1996).
83. H.Y. Liou, R.I. Hsieh, “Microstructure and pitting corrosion in simulated heat-affected zones of duplex stainless steels”, Materials Chemistry and Physics Vol. 74, pp. 33-42 (2002).
84. M. Miura, M. Koso, T. Kudo, Welding International, Vol. 4, No. 3, pp. 200-206 (1990).
85. 曾光宏,「不銹鋼銲件變形與殘留應力之研究」,.國立交通大學,博士論文, (2001)。
86. J.W. Oldfield, “Test techniques for pitting and crevice corrosion resistance of stainless steels and nickel-base alloys in choride containing environment”, International Materials Reviews, Vol. 32, No.3, pp. 153 (1987).
87. N.G. Thompson and B.C. Syrett, “Relationship between conventional pitting and protection potentials and a new, unique pitting potential”, Corrosion-NACE, Vol. 48, pp. 649 (1992).
88. J.G. Kim and R.A. Buchanan, “Localized corrosion and stress corrosion cracking characteristics of a low-aluminum content iron aluminum alloy” Corrosion-NACE, Vol. 50, pp. 658 (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top