參考文獻
1. H.Y. Huang, S.W. Shyu, K.H. Tseng, C.P. Chou, “ Evaluation of TIG flux welding on the characteristics of stainless steel”, Science and Technology of Welding and Joining, Vol. 10, No. 5, pp. 566-573 (2005).
2. S.W. Shyu, H.Y. Huang, K.H. Tseng, C.P. Chou, “Study of the performance of stainless steel A-TIG welds”, Journal of Materials Engineering and Performance, Vol. 17, No. 2, pp. 197-201 (2008).
3. H. Fujii, T. Sato, S.P. Lu, K. Nogi, “ Development of an advanced A-TIG (AA-TIG) welding method by control of Marangoni convection”, Materials Science and Engineering A, Vol. 495, pp. 296-303 (2008).
4. H.Y. Huang, S.W. Shyu, K.H. Tseng, C.P. Chou, “Effects of the process parameters on austenitic stainless steel by TIG-flux welding”, Journal of Materials Science and Technology, Vol. 22, No. 3, pp. 367-374 (2006).
5. S.P. Lu, D.Z. Li, H. Fujii, K. Nogi, “Time dependant weld shape in Ar-O2 shielded stationary GTA welding”, Journal of Materials Science and Technology, Vol. 23, No. 5, pp. 650-654 (2007).
6. S. Leconte, P. Paillard, P. Chapelle, G. Henrion, J. Saindrenan, “Effect of oxide fluxes on activation mechanisms of tungsten inert gas process”, Science and Technology of Welding and Joining, Vol. 11, No. 4, pp. 389-397, (2006).
7. Q.M. Li, X.H. Wang, Z.D. Zou, J. Wu, “Effect of activating flux on arc shape and arc voltage in tungsten inert gas welding”, Transactions of Nonferrous Metals Society of China, Vol. 17, pp. 486-490 (2007).
8. L.M. Liu, Z.D. Zhang, G. Song, L. Wang, “Mechanism and microstructure of oxide fluxes for gas tungsten arc welding of magnesium alloy”, Metallurgical and Materials Transactions A,; Vol. 38, No. A, pp. 649-658 (2007).
9. Y.L. Xu, Z.B. Dong, Y.H. Wei, C.L. Yang, “Marangoni convection and weld shape variation in A-TIG welding process”, Theoretical and Applied Fracture Mechanics, Vol. 48, pp. 178-186 (2007).
10. Z.D. Zhang, L.M. Liu, Y. Shen, L.Wang, “Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux”, Materials Characterization, Vol. 59, pp. 40-46 (2008).
11. L. Liu, H. Sun, “Study of flux assisted TIG welding of magnesium alloy with SiC particles in flux”, Materials Research Innovations, Vol. 12, No. 1, pp. 47-51 (2008).
12. H.Y. Huang, “Effects of shielding gas composition and activating flux on GTAW weldments”, Materials and Design, Vol. 30, pp. 2404-2409 (2009).
13. S.M. Gurevich, V.N. Zamkov, N.A.Kushnirenko, “Improving the penetration of titanium alloys when they are welded by argon tungsten arc process”, Avtomaticheskaya Svarka, Vol. 9, pp. 1-4 (1965).
14. W.Lucas and D.S. Howse, “Activating flux - increasing the performance and productivity of the TIG and plasma processes”, Weld. Met. Fabr., Vol. 64, No. 1, pp. 11-17 (1996).
15. D.S. Howse and W. Lucas, “Investigation into arc constriction by active fluxes for tungsten inert gas welding”, Sci. Technol. Weld. Joining, Vol. 5, No. 3, pp. 189-193 (2000).
16. T. Paskell, C. Lundin, and H. Castner, “GTAW flux increases weld joint penetration”, Weld. J., Vol. 76, No. 4, pp. 57-62 (1997).
17. S.M. Gurevich. and V.M. Zamkov, “Welding titanium with a nonconsumable electrode using fluxes”, Avtomaticheskaya Svarka, Vol. 12, pp. 13-16 (1966).
18. D. Troy, Paskell, “Gas tungsten arc welding flux”, United State Patent 5804792, (1998).
19. M Marya, G.R. Edwards., “Chloride contributions in flux-assisted GTA welding of magnesium alloys”, Welding Journal, Vol. 81, No. 12, 291-298 (2002).
20. J. Paulo, Modenesi, R. Eustáquio Apolinário, Iaci M. Pereira, “TIG welding with single-component flux”, J. Mater. Process. Technol., , Vol. 99, PP. 260-265 (2000).
21. P.C. Anderson and R. Wiktorowicz, “Improving productivity with A-TIG welding”, Weld. Met. Fabr., Vol. 64, No. 3, pp. 108-109 (1996).
22. M. Miura, M. Koso, T. Kudo, H. Tsuge. “The effect of nickel and nitrogen on the microstructure and corrosion resistance of duplex stainless steel weldment”, Welding International,; Vol.4, No. 3, pp. (200-206) 1990.
23. M.B. Cortie, J.H. Potgieter, “The effect of temperature and nitrogen content on the partitioning of alloy elements in duplex stainless steels”, Metallurgical Transactions, Vol. 22A, pp. 2173-2179 (1991).
24. Z. Sun, M. Kuo, I. Annergren, D..Pan, “Effect of dual torch technique on duplex stainless steel welds”, Materials Science and Engineering A; Vol. 356, pp. 274-282 (2003).
25. N. Sridhar, J. Kolts, L.H. Flashe, “A duplex stainless steels for chloride environments”, Journal of Metals,Vol. 37, No. 3,pp. 31-35 (1985).
26. S.T. Tsai, K.P. Yen, H.C. Shih, “The embrittlement of duplex stainless steel in sulfide-containing 3.5 wt% NaCl solution”, Corrosion Science; Vol. 40, pp. 281-295 (1998).
27. Iris Alvarez-Armas., “Duplex stainless steels: brief history and some recent alloys”, Recent Patents on Mechanical Engineering, Vol. 1, pp. 51-57 (2008).
28. W.C. Liu, P.W. Liu, J.K. Wu, “Hydrogen transport and degradation of a commercial duplex stainless steel”, Corrosion Science, Vol. 44, pp. 1783
(2002).
29. John C. Lippold and Damian J. Kotecki, “Welding Metallurgy and Weldability of Stainless Steels”, A John Wiley & Sons,Inc.,Publication, pp.231-263 (2005).
30. 黃義順,「雙相不銹鋼及其銲件低週次疲勞與腐蝕特性」,碩士論文,國立台灣海洋大學,基隆 (2003)。31. H. Sieurin, R. Sandström, “Sigma phase precipitation in duplex stainless steels 2205”, Materials Science and Engineering, A444, pp. 271-276 (2007).
32. U. Fekken, L.Van Nassau, M.Vermey, “Hydrogen induced cracking in austenitic ferritic stainless steel”, Proc. Duplex stainless steels'86 conference, pp. 268-279 (1986).
33. H.Y. Liou, R.I. Hsieh, W.T. Tsai, “Microstructure and stress corrosion cracking in simulated heat-affected zones of duplex stainless steels” Corrosion Science, 44, pp. 2841-2856 (2002).
34. J. Charles, “Super duplex stainless steels: structure and properties”, Duplex stainless steels ‘91 ,Vol. 1, pp.3-48 (1991).
35. W. Przetarkiewicz, R. Tomczak, “Some aspects of the weldability of ferritic-austenitic steels of duplex and superduplex grades”,Welding International, Vol. 9, No. 10, pp. 781 (1995).
36. 黃和悅,「不銹鋼TIG-Flux銲接技術之研究」,博士論文,國立交通大學,新竹 (2005).37. D.L Olson, “Prediction of austenitic weld metal microstructure and properties”, Weld. J., Vol. 64, No. 10, pp. 281-295 (1985).
38. D.J. Kotecki and T.A. Siewert, “WRC-1992 constitution diagram for stainless steel weld metals: A modification of the WRC-1988 diagram”, Weld. J., Vol. 71, No. 5, pp.171-178 (1992).
39. W.D. Strippelmann and R. Brenner, “Guide to Welding-Oversea Transparences and Work Sheets for Vocational Training”, DVS-Verlag GmbH, Düsseldorf, Germany, (1988).
40. 錢在中,焊接技術手冊,山西科學技術出版社,(1999)。
41. H.B. Cary, “Modern Welding Technology”, Fourth Edition, Prentice Hall, Upper Saddle River, New Jersey, (1998).
42. 姜煥中,電弧焊及電渣焊,機械工業出版社,(1988)。
43.“Welding handbook”, Vol. 1, American Welding Society, (1987).
44. F. Larry Jeffus: “Welding: principles and applications”, Delmar Publishers, (1992).
45. 王振欽,銲接學,高立圖書股份有限公司,(1997)。
46. H.Y. Huang, S.W. Shyu, K.H. Tseng and C.P. Chou, Journal of Material Science and Engineering, Vol. 36, No. 1, pp.23-30 (2004).
47. H.Y. Huang, S.W. Shyu, K.H. Tseng and C.P. Chou, “Effect of A-TIG Welding on the morphology of stainless steel welds”, 7th International Conference on Trends in Welding Research Conference , Pine Mountain, Georgia, U.S. , (2005).
48. S.W. Shyu, H.Y. Huang, K.H. Tseng and C.P. Chou, “The mechanism of flux assisted arc Welding in austenitic stainless steel welds” The Conference on Materials Science & Technology, Pittsburgh, PA, U.S., (2005).
49. S.W. Shyu, H.Y. Huang, K.H. Tseng and C.P. Chou, “Sulfide contributions in A-TIG Welding of austenitic stainless steel welds” The International Conference on Advanced Welding/Joining Technology for 21th Century , Dalian, China, (2005).
50. 黃和悅、徐享文、林國書、曾光宏、周長彬,銲接與切割,第十 三卷,第四期,第49-55頁 (2003)。
51. 黃和悅、徐享文、曾光宏、周長彬,「活性助銲劑對沃斯田鐵不銹鋼銲道形態與銲件變形之影響」,中國機械工程學會第二十屆全國學術研討會,台北,(2003)。52. C.P. Chou, S.W. Shyu, H.Y. Huang, K.H. Tseng and T.C. Yang “Welding \ flux for use in arc-welding of stainless steel, method of welding stainless steel members using the welding flux”, 7,052,559, United States.
53. M.Q. Jofnson and C.M. Fountain, “Penetration” flux, US6,664,508, United States.
54. T.D. Paskell, “Gas tungsten arc welding flux”, 5,804,792, United States.
55. 黃榮茂、林聖富、王禹文、楊得仁,化學化工大辭典,曉園出版社,(2000)。
56. 周怡馨、曾光宏、曾秉鈞,「不銹鋼高熔深氬銲助銲劑介紹」銲接與切割,第十六卷第四期,第39-45頁,(2006)。57. C.R. Heiple, J.R. Roper, “Effect of Selenium on GTAW Fusion Zone Geometry”, Welding Journal, Vol. 60,No. 8, pp.143-145 (1981).
58. C.R. Heiple, J.R. Roper, “Mechanism for Minor Element Effect on GTA Fusion Zone Geometry”, Welding Journal, Vol. 61, No. 4, pp. 97-102 (1982).
59. C.R. Heiple, J.R. Roper, R.T. Stagner, R.J. Aden, “Surface Active Element Effect on the Shape f GTA, Laser, and Electron Beam Welds”, Welding Journal, Vol. 62, No. 3, pp. 72-77 (1983).
60. C.R. Heiple, P. Burgardt, “Effect of SO2 Shielding Gas Addition on GTA Weld Shape”, Welding Journal, Vol. 64, No. 6, pp.159-162 (1985).
61. P. Burgardt, C.R. Heiple, “Interaction between Impurities and Welding Variables in Determining GTA Weld Shape,” Welding Journal, Vol. 65, No. 6, pp. 150-155 (1986).
62. A.G. Simonik, “Effect of Contraction of the Arc Discharge Upon the Introduction of Electro-Negative Elements”, Welding Production (English translation of Svarochnoe Proizvodstvo), Vol. 23, No.3, pp. 68-71 (1976).
63. J.J. Lowke, M.Tanaka, M. Ushio, “Mechanisms Giving Increased Weld Depth Due to a Flux”, Journal of Physics D: Applied Physics, Vol. 38, No. 18, pp.3438-3445 (2005).
64. M.M. Savitskii, G.I. Leskov , “Mechanizm vliyamia dzlektrootrida tepvnykh zpementov na proplavlauchyu sposovnosti luqi s voliframoym katodm Avtom,” Avtom. Svarka., Vol. 9, pp.17 (1980).
65. Yuzhen Zhao et al., “The Study of Surface-Active Element Oxygen on Flow Patterns and Penetration in A-TIG Welding”, Metallurgical and Material Transaction B, Vol. 37B, pp. 485-493 (2006).
66. 蒲志桔,「亞硝酸鈉對不銹鋼與鎳超合金之腐蝕抑制性研究」,碩士論文,國立台灣海洋大學,基隆 (2003)。67. R. B. Hutehings, A. Turnbull and A.T. May, Scripta, Metallurgica et Materials, Vol. 25, pp.2657 (1991).
68. D.A. Jones, “Principles And Prevention of Corrosion”, 2nd ed., Prentice Hall, (1996).
69. T. Laitinen,” Localized corrosion of stainless steel in chloride, sulfate and thiosulfate containing environments”, Corrosion Science, Vol. 42, No.3, pp. 421-441 (2000).
70. P. Ernst, N.J. Laycock, M.H. Moayed, R.C. Newman, “The mechanism of lacy cover formation in pitting”, Corrosion Science, Vol. 39, pp. 1133-1136 (1997).
71. 魏明德,「鈦合金及其銲件之低週期疲勞性質與機制」, (2002)。
72. Princeton Applied Research Applied Instruments Group, “Basics of Corrosion Measurements”, Application Note Corrosion 1, pp. 2-12 (1982).
73. F. Mansfeld, “Recording and Analysis of AC Impedance Data for Corrosion Studies, I. Background and Methods of Analysis”, Corrosion, Vol. 37, pp. 301-307 (1981).
74. F. Mansfeld, M.W. Kendig and S. Tsai, “Recording and Analysis of AC Impedance Data for Corrosion Studies, II. Experimental Approach and Results”, Corrosion, Vol. 38, pp. 570-580 (1982).
75. G.W. Walter, “A Review of Impedance Plots Used for Corrosion Performance Analysis of Painted Metals”, Corrosion. Science, Vol. 26, pp. 681-704 (1986).
76. A.U. Malik, N.A. Siddiqi, “The effect of dominant alloy additions on the corrosion behavior of some conventional and high alloy stainless steels in seawater”, Corrosion Science, Vol. 37, No. 10, pp. 1521-1535 (1995).
77. K. Hladky, L.M. Callow and J.L. Dawson, “Corrosion Rate from Impedance Measurements: An Introduction”, Br. Corrosion J., Vol. 15, pp. 20-25 (1980).
78. Metals Handbook, Eight Edition, Vol. 9, pp. 69 (1977).
79. 柯賢文,腐蝕及其防制,全華科技圖書股份有限公司,(2006)。
80. A. J. Sedriks, “Corrosion of Stainless Steels”, John Wiley & Sons, New York, pp. 88 (1979).
81. G. J. Theus and R. W. Staehl, Stress Corrosion Cracking and Hydrogen Embrittment of Fe-Bases Alloys, pp. 845 (1978).
82. F. Bonollo, A. Tiziani, Welding International, Vol. 10, No. 2, pp.124 (1996).
83. H.Y. Liou, R.I. Hsieh, “Microstructure and pitting corrosion in simulated heat-affected zones of duplex stainless steels”, Materials Chemistry and Physics Vol. 74, pp. 33-42 (2002).
84. M. Miura, M. Koso, T. Kudo, Welding International, Vol. 4, No. 3, pp. 200-206 (1990).
85. 曾光宏,「不銹鋼銲件變形與殘留應力之研究」,.國立交通大學,博士論文, (2001)。86. J.W. Oldfield, “Test techniques for pitting and crevice corrosion resistance of stainless steels and nickel-base alloys in choride containing environment”, International Materials Reviews, Vol. 32, No.3, pp. 153 (1987).
87. N.G. Thompson and B.C. Syrett, “Relationship between conventional pitting and protection potentials and a new, unique pitting potential”, Corrosion-NACE, Vol. 48, pp. 649 (1992).
88. J.G. Kim and R.A. Buchanan, “Localized corrosion and stress corrosion cracking characteristics of a low-aluminum content iron aluminum alloy” Corrosion-NACE, Vol. 50, pp. 658 (1994).