跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱孟成
研究生(外文):Mon-Chern Chu
論文名稱:細長垂直長方形流道在突縮段、突擴段之兩相流流譜觀察及壓降量測分析
論文名稱(外文):Two-Phase flow characteristics across sudden contraction and sudden expansion in small rectangular channels
指導教授:陳英洋
指導教授(外文):Ing Youn Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:109
中文關鍵詞:壓降流譜頸縮突縮突擴兩相流
外文關鍵詞:sudden contractiovena contractaSudden expansionpressure changeflow patterntwo-phase flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究為突縮段、突擴段兩相壓降從矩形流道(3 mm × 9 mm 和3 mm× 6 mm)連接直徑3 mm 之圓管以及矩形流道(4 mm × 4 mm、2 mm × 4 mm、4 mm × 6 mm 和2 mm × 6 mm)連接直徑2 mm 之圓管,其工作流體為液態水以及氣態空氣。研究結果發現在低乾度範圍內壓降斜率會呈現負成長的趨勢,此原因與頸縮現象的流動型態有關。將實驗的實測壓降與其他文獻
的壓降值和Homogeneous Model 預測式作比較,發現平均誤差為53.36%。因此,本研究提出一修正因子來改善目前Homogeneous Model 的預測能力,其修正因子與表面張力、Bond number 以及面積比有關。此依修正式與其他文獻數據(357 筆)以及此次實驗數據(240 筆)比較後,本修正經驗式的總平均誤差為29.30%。
對於兩相突擴壓降而言也會發現壓降會有下降的趨勢,相較於突縮實驗是因為頸縮現象造成壓降下降趨勢,突擴實驗造成的原因是因為動能累積造成液體產生噴射現象造成壓降的下降。最後,再將其他文獻對突擴壓降實驗所找出的預測式與Abdelall(2005) 、McGee(1966) 、Mendler 、Schmidt and Friedel(1996)和本次突擴壓降資料作出整理比對歸納出使用範圍,希望對使用者有所幫助。
This study investigates the pressure change and flow pattern subject to the
influence of sudden contraction and sudden expansion. The air and water mixture flows from small rectangular channels (2×4 mm, 2×6 mm, 4×4 mm and 4×6 mm, respectively) connect to a 2 mm diameter tube and rectangular channels (3×6 mm, 3×9 mm, respectively) connect to a 3 mm diameter tube. The total mass flux (G) ranges from 100 to 700 kg/m2·s with gas quality (x) being varied from 0.001 to 0.8.
In general the contraction pressure change increases with the rise of mass
flux, and vapor quality but an unique deflection of contraction pressure
change pertaining to liquid vena contracta at a very low gas quality is
encountered at a very low gas quality in the 4×6 mm and 3×9 mm test section.
It is found that the influence of surface tension and tube size, or quivalently
the Bond number plays a major role for the departure of various
models/correlations. Hence by taking account the influences of Bond number,
Weber number and area contraction ratio into the homogeneous model, a
modified homogeneous correlation is proposed. The mean deviation is 29.3%
to the present data and the available literature data.
For the expansion pressure change, an unique deflection of contraction
pressure change at a very low gas quality is also observed. The phenomenal
observation is related to the liquid jet-like flow pattern. By contrast, an
appreciable increase of pressure difference is seen when the liquid jet-like
flow pattern is completely gone. Finally, the predictions of the available
literature correlations are compared to all literature and the present data. The lowest mean deviation is Richardson’s prediction with the mean deviation of 71.80%.
英文摘要 ……………………………………………………………….. v
中文摘要 ……………………………………………………………….. vi
目錄 ……………………………………………………………….. viii
表目錄 ……………………………………………………………….. xi
圖目錄 ……………………………………………………………….. xii
符號說明 ……………………………………………………………….. xvi
第一章 緒論………………………………………………………….. 1
1.1 研究背景與動機……………………………………………. 1
1.2 研究目的……………………………………………………. 3
第二章 文獻回顧……………………………………………………. 4
2.1 直管兩相流摩擦壓降………………………………………. 4
2.1.1 基礎理論模式………………………………………………. 4
2.1.2 經驗式……………………………………………………….. 7
2.2 兩相流面積驟變壓降………………………………………. 10
2.2.1 兩相流突縮壓降……………………………………………. 10
2.2.2 兩相流突擴壓降……………………………………………. 15
2.3 流譜………………………………………………………….. 18
2.3.1 流譜型態種類………………………………………………. 18
第三章 實驗系統與分析方法………………………………………. 24
3.1 簡介………………………………………………………….. 24
3.2 兩相流實驗系統……………………………………………. 24
3.2.1 空氣循環系統………………………………………………. 24
3.2.2 水循環系統…………………………………………………. 25
3.2.3 液氣混合區…………………………………………………. 25
3.2.4 測試段……………………………………………………….. 25
3.2.5 拍攝段……………………………………………………….. 26
3.3 實驗儀器…………………………………………………….. 26
3.3.1 資料擷取系統(紀錄器)…………………………………… 26
3.3.2 空氣流量量測………………………………………………. 27
3.3.3 水流量量測…………………………………………………. 28
3.3.4 溫度量測……………………………………………………. 29
3.3.5 壓力量測……………………………………………………. 30
3.3.6 壓力差量測…………………………………………………. 30
3.3.7 照明設備……………………………………………………. 31
3.4 工作流體的熱力物理性質………………………………… 32
3.5 實驗過程…………………………………………………….. 33
3.5.1 系統測漏…………………………………………………….. 33
3.5.2 實驗操作步驟………………………………………………. 33
3.6 實驗觀察…………………………………………………….. 34
3.6.1 流譜型態分析………………………………………………. 34
3.6.2 兩相流譜實驗數據換算…………………………………… 35
第四章 結果與討論……………………………………….………… 40
4.1 兩相流壓降…………………………………………………. 40
4.2.1 兩相流突縮段壓降壓力變化情形………………………… 41
4.2.2 突縮段流譜部份流譜比較………………………………… 31
4.3.1 兩相流突擴段壓降壓力變化情形……………….……….. 44
4.3.2 突擴段流譜部份流譜比較………………………………… 46
第五章 結論…………………………….……….…………………… 88
參考文獻 ………………………………………………………….……. 89
1. Abdelall, E.F., Hahm, G., Ghiaasiaan, S.M., Abdel-Khalik, S.I., Jeter, S.S.,
Yoda, M., and Sadowski, D.L., 2005, “Pressure drop caused by abrupt flow area
changes in small channels,” Exp. Thermal & Fluid Science. Vol. 29, pp. 425-434.
2. Alves, G. E., 1954,”Co-current liquid-gas flow in a pipeline contactor,”
Chem.Process. Engng, Vol.50, No.4, pp.449-456
3. Attou, A., L. Bolle. 1997. “A new correlation for the two-phase pressure
recovery downstream from a sudden enlargement.” Chem. Eng. Technology.
20:419-423.
4. Barnea, D., Luninski, Y., and Taitel, Y., 1983, “Flow pattern in Horizontal
and Vertical Two Phase Flow in Small Diameter Pipes,” The Canadian J. of
Chemical Engineering, Vol. 61, pp.617-620.
5. Chen, I. Y., Yang, K. S., Chang, Y. J. and Wang, C.C., 2000, “Two-Phase
Pressure Drop of Air-Water and R-410A in Small Horizontal Tubes,”
Int.J.ofMultiphaseFlow,June.(accepted)(NSC89-2212-E-224-007)
6. Chen, I.Y., Liu, C.C., Chien, K.H., Wang, C.C., 2007a, “Two-phase flow
characteristics across sudden expansion in small rectangular channel,”
Experimental, Thermal Fluid Science, Vol. 32, pp. 696-706.
7. Chen, I.Y., Liu, C.C., Chien, K.H., and Wang, C.C., 2007b, “Two-phase flow
characteristics across sudden expansion in small rectangular channel,” Exp.
Thermal Fluid Science, Vol. 32, pp. 696-706.
8. Chisholm, D., 1967, ”A Theoretical Basis for The Lockhart-Martinelli
Correlation for Two-Phase Flow,” Int. J. of Heat and Mass Transfer ,Vol.10,pp.1767-1778.
9. Chisholm, D. and L.A. Sutherland. 1969. “Prediction of pressure gradients in pipeline system during two-phase flow.” Proc. Instn Mech. Engineers 184:P +
3C.
10. Chisholm, D., 1983, “Two-phase Flow in Pipelines and Heat Exchangers,”
George Godwin, London, Chapter 12, pp. 175-192, 1983.
11. Collier, J.G., and Thome, J.R.. 1994, “Convective Boiling and
Condensation,” Third Edition, Oxford, New York, Chapter 3, p. 111.
12. Damianides,C.A., & Westwater, J. W., 1988, “Two-Phase Flow in a Compact
Heat Exchanger and in Small Tubes,” in Proceedings 2nd UK Natn Conf. On
Heat Transfer, Vol II ,pp.1257-1268..
13. Geiger, G.E., 1964, “Sudden contraction losses in single and two-phase
flow.” Ph.D Thesis, University of Pittsburgh, U.S.A.
14. Harnett, J.P. and M. Kostic. 1989. “Heat Transfer to Newtonian and
non-Newtonian fluids in rectangular ducts.” Adv. Heat Transfer. 19:247-356.
15. Kawahara, A., Chung, P.M.-Y., Kawaji, M., 2002. ”Investigation of
two-phase flow pattern, void fraction and pressure drop in a microchannel,” Int. J. Heat Mass Transfer, 28: 1411-1435.
16. Lockhart, R. W. and Martinelli, R. C., 1949, “Proposed Correlation of Data
for Isothermal Two-Phase Two –Component Flow in Pipes,” Chemical Eng.
Progress Vol. 45, pp. 39-48.
17. Levy, S., 1960, “Stream Slip-Theoretical Prediction from Momentum
Model,” Transcation of ASME : J. of Heat Transfer, Vol.82, No.2, pp.113-124.
18. Manhane, J. M., Gregory, G. A., Aziz, K. A., 1974, ”A flow Pattern Map
for Gas- Liquid Flow in Horizontal pipeline,“ Int. J. Multiphase Flow, vol 1,
pp 537-553.
19. Martinelli , R. C., & Nelson , D. B., 1948, ”Prediction of Pressure Drop
during Forced Circulation Boiling of Water,” Transcation of ASME : J. of heat
transfer, Vol. 70, No. 6, pp.695-702.
20. McGee J.W., 1966, “Two-phase flow through abrupt expansions and
contractions,” Ph.D Thesis, University of North Carolina at Raleigh, U.S.A..
21. Mishima, K., and Hibiki, T., 1996, “Some Characteristics of Air-Water
Two-Phase Flow in Small Diameter Vertical Tubes,” Int. J. of Multiphase Flow ,
Vol. 22, No.4, pp.703-712.
22. Richardson, B. 1958. Some problems in horizontal two-phase, two-component flow. Report ANL-5949.
23. Romie, F., Private Communication to P. Lottes, American Standard Co., 1958.
24. Schmidt, J., and Friedel, L, 1996, “Two-phase flow pressure drop across
sudden contractions in duct areas,” Chem. Eng. Commun. 141–142 (1996)
175–486 190.
25. Taitel, D., D. Bornea and A.E. Duckler. 1980. “Modeling flow pattern
transitions for steady upward gas-liquid flow in vertical tubes.” A.I.Ch.E.
Journal. 27(3):345-354.
26. Toufik, Y., and Ghiaasiaan, S.M., 2008. “Pressure drop caused by flow area
changes in capillaries under low flow conditions.” Int. J. Multiphase Flow. 34,2-12.
27. Wadle, M. 1989. “A new formula for the pressure recovery in an abrupt
diffuser.” Int. J. Multiphase Flow. !5(2):241-256..
28. Wambsganss, M.W., J.A. Jendrzejezyk, D.M. France. 1991. “Two-phase
flow patterns and transactions in a small. horizontal, rectangular channel.” Int. J. Multiphase Flow. 17(3):327-342.
29. Wambsganss, M.W., J.A. Jendrzejezyk, D.M. France and N.T. Obot. 1992.
“Frictional pressure gradients in two-phase flow in a small horizontal rectangular channel.” Experimental Thermal and Fluid Science. 5:40-56.
30. Wang, C.C., Chiang, S.K., Chang, Y.J. and Chung, T.W., 2000, “Two Phase
Flow Resistance of Refrigerants R-22, R-410A, And R-407C in small Diameter,”
Chemical Eng. Research Design, vol. 17, pp. 1-30.
31. Zivi, S.M., 1964. “Estimation of steadt state steam void-fraction by means of principle of minimum entropy production.” ASME Trans. Series. C 86, 237-252.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊