一、中文部份
[1]謝千慧, “一個適用於概念漂移資料串流探勘法之研究”,國立台南師範學院,碩士論文,2004。二、西文部份
[2] J. R. Quinlan, 1993 “C4.5: Program for Machine Learning,” Morgen Kaufmann Publisher, San Mateo, Ca.
[3] Domingos P. and Hulten G. (2000) Mining High-Speed Data Streams. In Proceedings of the Association for Computing Machinery Sixth International Conference on Knowledge Discovery and Data Mining
[4] Hulten G., Spencer L., and Domingos P. (2001) Mining Time-Changing Data Streams. ACM SIGKDD Conference.
[5] Wang H., Fan W. Yu P. and Han J. (2003) Mining Concept-Drifting Data Streams using Ensemble Classifiers, in the 9th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Washington DC, USA.
[6] Fan W.(2004) Systematic data selection to mine concept-drifting data streams. ACM KDD Conference, pp. 128.137.
[7] Aggarwal C., Han J., WANG j., Yu P. S., (2003) A Framework for Clustering Evolving Data Streams, Proc. 2003 Int. Conf. on Very Large Data Bases (VLDB ’03), Berlin, Germany, Sept. 2003.
[8] Aggarwal C., Han J., Wang J., Yu P. S.,(2004) On Demand Classification of Data Streams, Proc. 2004 Int. Conf. on Knowledge Discovery and Data Mining (KDD’04), Seattle, WA.
[9] Last M. (2002) Online Classification of Nonstationary Data Streams, Intelligent Data Analysis, Vol. 6, No. 2, pp. 129-147.
[10] Law Y., Zaniolo C. (2005) An Adaptive Nearest Neighbor Classification Algorithm for Data Streams, Proceedings of the 9th European Conference on the Principals and Practice of Knowledge Discovery in Databases, springer Verlag, Porto, Portugal.
[11] Ferrer-Troyano F. J., Aguilar-Ruiz J. S. and Riquelme J. C. (2004) Discovering Dceision Rules from Numerical Data Streams, ACM Symposium on Applied Computing, pp. 649-653.
[12] Gaber, M, M., Krishnaswamy, S., and Zaslavsky, A., (2005). On-board Mining of Data Streams in Sensor Networks, Accepted as a chapter in the forthcoming book Advance Methods of Knowledge Disvcovery from complex Data,(Eds.) Sanghamitra Badhyopadhyay, Ujjwal Maulik, Lawrence Holder and Diane cook, Springer Verlag, to appear.
[13] G. Hulten, L. Spencer, and P. Ddmingos, “Mining Time-Changing Data Streams, ” In Proc. 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA., pp. 97-106, Aug. 2001.
[14] R. Klinkenberg and I. Renz, “ Adaptive Information Filtering:Learning in The Presence of Concept Drifts, ”In M. Sahami, M. Craven, T. Joachims, and A. McCallum, editors, Workshop Notes of the ICML-98 Workshop on Learning for Text Categorization, pp.33-40, Menlo Park, CA., AAAI Press, 1998.
[15] J. R. Quinlan, “Learning Efficient Classification Procedures and Their Application to Chess End Games, ” Machine Learning : An Artificial Intelligence Approach , Michalski et. All (EDS), Tioga Publishing, Palo Alto, 1983.
[16] J. R. Quinlan, “Induction of Decision Trees, ” Machine Learning, Vol. 1, No. 1, pp. 81-106, 1986.
[17] J. R. Quinlan, “C4.5:Program for Machine Learning, ” Morgen Kaufmann Publisher, San Mateo, CA, 1993.
[18] P. Domingos and G. Hulten, “mining High-Speed Data Streams, ”In Proc. Association for Computing Machinery 6th International Conference on Knowledge Discovery and Data Mining, Bostion, MA., pp. 71-80, Aug. 2000.
[19] Quinlan, J.R., 1986. Induction of Decision Trees. Machine Learning, 1, 1, pp.81-106
[20] Lewis, R.J., M.D., Ph.D., 2000. An Introduction to Classification and Regression Tree (CART) Analysis. The Annual Meeting of the Society for Academic Emergency Medicine, Francisco, California.
[21] Hand D.J., Mannila H., and Smyth P. (2001) Principles of data mining, MIT Press.
[22]Hastie T., Tibshirani R., Friedman J. (2001) The elements of statistical learning: data mining, inference, and prediction, New York: Springer.
[23]M. Maloof, “Incremental Rule Learning with Partial Instance Memory for Changing Concepts, ”In Proc.s of the international Joint Conference on Neural Networks, Los alamitos, CA: IEEE Press, Jul. 2003.
[24]G. Widmer and M. Kubat, “Learning in The Presence of Concept Drift and Hidden Contexts, ” Machine Learning, Vol. 23, No. 1, pp. 69-101, 1996.