跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施純賢
研究生(外文):Shih Chun-Hsien
論文名稱:石化業廢水處理廠中揮發性有機化合物二次污染之研究
論文名稱(外文):Secondary Pollution by Volatile Organic Compounds in Wastewater Treatment Plant of Petrochemical Industry
指導教授:林啟燦林啟燦引用關係
指導教授(外文):Lin Chitsan
口試委員:許逸群林怡利
口試委員(外文):Hsu Yi ChunLin Yi Li
口試日期:2013-05-23
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海洋環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:104
中文關鍵詞:石化業廢水處理廠揮發性有機化合物二次污染逸散途徑
外文關鍵詞:petrochemical industrywastewater treatment plantsvolatile organic compoundssecondary pollutionemission pathway
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1731
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:1
石化業廢水處理廠廢水中含大量VOCs,早期國內對該產業之VOCs管制標準較不完善,因此未經妥善處理之廢水恣意排放,導致污染問題層出不窮,加上該類污染物質易揮發的特性,於處理流程的高擾動性下形成了逸散的優良條件。因此石化業廢水處理廠便同時具有:1.未妥善處理廢水排放造成的液相二次污染;2.於廢水處理過程中因水體擾動等因素,造成經逸散途徑之氣相二次污染。
因此本研究以北高雄石化廠區內的廢水處理廠為例,進行十天次的水體與氣體樣品採集分析,以監測廠址中液相與氣相中物染物種及濃度趨勢,並探討放流水與逸散途徑所造成二次污染之現況。再配合相關管制標準,擬定二次污染防治措施,減少污染物質進入環境,確實達到污染減量之目標。
研究結果顯示:1. 本廠址所收受三種製程廢水,以PVC製程為主要貢獻源,其濃度介於(685 -123,000 μg/L),整體而言濃度極不穩定,進而增加了後續處理單元之負荷量。2. 而廢水中主要化合物依序為二氯甲烷(1,786 μg/L)、1,2-二氯乙烷、氯乙烯、三氯甲烷及氯甲烷,顯示本研究廠址以Cl-VOCs為主要污染物,佔總體污染物96%。3. 氣體樣品分析結果顯示,與水體結果相符,以二氯甲烷(787 μg/ m3)為主,由各單元監測顯示,確實存在著逸散問題,且以前置單元並具有額外曝氣系統的生物反應槽(4,377μg/m3)為最主要逸散源。4.經由動力採樣設備與CANISTER採樣結果比對,顯示確實比直接以CANISTER採樣更能接近理論值,其比值介於1~4.12,不僅佐證逸散問題其實比預期嚴重,更能提供未來相關研究採樣修正。5. 配合相關管制標準比較探討,液相方面並無法完全符合排放水管制標準,其超標率達44%;氣相方面亦無法符合法規標準,處理單元須針對上方逸散氣體進行槽體封閉及逸散氣體回收再處理等二次防治措施。
藉由本研究了解,石化業廢水處理廠主要污染問體在於逸散方面所造成之二次污染,雖然也可針對氣體進行相關二次污染防治,但這些防治措施僅能部分應用,且尚須針對各種化合物進行更精確之模擬計算與研究,若要追本朔源確實根除所有的污染問題,亦須由水體著手不僅能永續解決問題,更能減少額外二次污染防治措施之建置。

The wastewater of wastewater treatment plants in petrochemical industry contains large quantity of VOCs (Volatile Organic Compounds), and the domestic regulatory standards of VOCs for the industry in early years was less developed; therefore, wastewater without proper treatment was wantonly discharged, causing pollution problems came out one after the other, coupled with volatile characteristics of such pollution substances, so a superior emission condition was formed under the high perturbation of treatment process. Therefore, wastewater treatment plants in petrochemical industry have both of: (1) liquid phase secondary pollution caused by improperly treated wastewater; and (2) gas phase secondary pollution through emission pathway resulted from factors such as water body perturbation caused by wastewater treatment process.
Therefore, this study took a wastewater treatment plant in northern Kaohsiung petrochemical factory as an example and conducted a ten day-times collection and analysis of water and gas samples to monitor the pollution species and concentration trends in liquid phase and gas phase in the factory site, and explore the current situation of secondary pollution caused by water flow and gas emission pathways. This study then coordinated with relevant regulatory standards to develop secondary pollution preventive and control measures for reducing pollutants entering into environment, and actually achieved the objective of pollution reduction.
The study results reveal that: (1) this factory site receives three kinds of manufacturing process wastewater with PVC manufacturing process as main contributing source, and the concentration of the wastewater is between 685-123,000 μg/L, overall speaking, the concentration is very unstable and thus increases the workload of subsequent treatment units; (2) the main compounds in wastewater in sequence are dichloromethane (1,786 μg/L), 1,2-dichloroethane, vinyl chloride, chloroform, and methylene chloride, showing that the most major pollutant in the studied factory site is Cl-VOCs and it accounts for 96% of overall pollutants; (3) the gas sample analysis shows a consistent result with the water body analysis, with methylene chloride (787 μg/m3) as the most major pollutant, and the monitoring results in various treatment units show that an emission problem really exists and the most major emission source comes from the pre-treatment unit with bio-reacting tank having an additional aeration system (4,377 μg/m3); (4) through the result of comparison between dynamic sampling equipment and CANISTER sampling, revealed that using a dynamic sampling equipment is indeed better than directly using CANISTER sampling and can better approach the theoretical value, the ratio is between 1~4.12, this not only corroborates that the emission problem is actually serious than expected, but also can even provide as sampling correction for future studies; and (5) coordinated with relevant regulatory standards to conduct comparison and exploration, in terms of liquid phase it can not fully comply with emission control standards, which exceeds the standard by up to 44%, and in terms of gas phase it is also unable to comply with the regulatory standards, so the treatment units are required to carry out secondary preventive and control measures including tank body closing and emission gas recycling processing against top emission gases.
Through this study, it is understood that the major pollution problem of wastewater treatment plants in petrochemical industry lies in the secondary pollution caused by emission side. Although it can be improved by establishing relevant secondary pollution preventive and control measures against gas emission, however, these measures can only be partially applied, and yet more accurate simulations and researches are required for various compounds. So if want to fundamentally get rid of all pollution problems through tracing to their origins, it is also required to proceed from water body, such that not only can sustainably resolve pollution problems, and also can help to reduce the requirement of building additional secondary pollution preventive control measures.

摘要 II
Abstract IV
誌謝 VII
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻回顧 4
2.1揮發性有機物特性及影響 4
2.1.1揮發性有機物之簡介 4
2.1.2含氯揮發性有機化合物對人體及環境之影響 5
2.2 國內外廢水處理場VOCs現況與對策 9
2.2.1 國內外廢水處理場VOCs調查概況 9
2.2.2 國內外廢水處理場VOCs逸散問題 10
2.2.3 國內外廢水處理場VOCs管制標準及概況 13
2.3研究場址背景調查 16
2.3.1研究場址單元概述 16
2.3.2 研究場址製程調查 18
2.4 VOCs傳輸機制 23
2.4.1 基礎理論介紹 23
2.4.2 VOCs傳輸機制 25
2.4.3逸散量推估 26
第三章 研究方法 29
3.1研究架構 30
3.2採樣規劃 31
3.2.1採樣時間 31
3.2.2採樣點設置 31
3.3水體樣品採樣分析 34
3.3.1 水中VOCs採樣方法 34
3.3.2 水中VOCs分析方法 35
3.4空氣樣品採樣分析 37
3.4.1空氣中VOCs採樣方法 37
3.4.2動力採樣設備採樣方法 37
3.4.3空氣中VOCs分析方法 39
3.5 研究材料與設備 42
3.5.1實驗材料 42
3.5.2儀器設備 43
3.5.3儀器測試與參數設定 48
3.6品保品管措施 51
3.6.1水體樣品品保品管措施 51
3.6.2氣體樣品品保品管措施 52
第四章 結果與討論 54
4.1研究廠址中水體監測結果分析 54
4.1.1水體中TVOCs調查概況 54
4.1.2 水體主要污染物探討 60
4.1.2.1主要污染物質與製程比對 60
4.1.2.2主要污染物質與廠內各單元濃度趨勢 64
4.1.3研究廠址周圍承受水體污染情形 67
4.2研究場址中氣體監測結果分析 68
4.2.1處理單元上方氣體調查概況 68
4.2.2氣體中主要污染物來源與途徑探討 70
4.2.2.1 氣體中主要污染物調查 70
4.3排放及逸散量推估 74
4.3.1 理論逸散速率計算 74
4.3.2 實測值與理論值比對探討 76
4.3.3 動力採樣設備實測結果 83
4.4環境影響與改善措施 86
4.4.1 相關管制標準比較 86
4.4.2 二次污染防治措施建議 89
4.4.3 暴露風險估算 92
第五章 結論與建議 95
5.1結論 95
5.2建議 96
參考文獻 97
附錄 102

Ali, K. O., David, T. L., Thomas, C. G., and Louis, K. (2008). "Plant-specific correlations to predict the total VOC emissions from wastewater treatment plants." Atmos. Environ., 42(42-19), 4530-4539.
Atkinson, R. (2000). "Atmospheric chemistry of VOCs and NOx." Atmos. Environ., 34(12-14), 2063-2101.
Bertanza, G., Papa, M., and Pedrazzani, R. (2013). "How green are environmental technologies? A new approach for a global evaluation: The case of WWTP effluents ozonation." Water Research, 47(1), 3679-3687.
Chen, W. H., Yang, W. B., Yuan, C. S., Yang, J. C., and Zha, Q. L. (2013) . "Influences of Aeration and Biological Treatment on the Fates of Aromatic VOCs in Wastewater Treatment Processes." Aerosol and Air Quality Research, 13: 225–236.
Cheng, W., Hsu, S., and Chou, M. (2008). "Volatile organic compound emissions from wastewater treatment plants in taiwan: Legal regulations and costs of control." J. of Environ. Manage., 88(4), 1485-1494.
Dewulf, J., and Van, L., H. (1997). "Analytical techniques for the determination and measurement data of 7 chlorinated C1- and C2-hydrocarbons and 6 monocyclic aromatic hydrocarbons in remote air masses: An overview." Atmos. Environ., 31(20), 3291-3307.
Freitas, D., Santos, L. M., and Livingston, A. G. (1995). "Novel membrane bioreactor for detoxification of VOC wastewaters: Biodegradation of 1,2-dichloroethane." Water Research, 29(1), 179-194.
Integrated Risk Information System (IRIS), Search Date: 2013-05
http://www.epa.gov/iris/
Jack, F., Susan, S., and Paul, J. C. (1979). "Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone." Tellus, 31(5), 432-446.
Kostiainen, R. (1995). "Volatile organic compounds in the indoor air of normal and sick houses." Atmos. Environ., 29(6), 693-702.
Kuran, P., and Sojak, L. (1996). "Environmental analysis of volatile organic compounds in water and sediment by gas chromatography." J. Chromatogr. A., 733(1-2), 119-141.
Lebrero, R., Bouchy, L., Stuetz, R. and Munoz, R. (2011). "Odor Assessment and Management in Wastewater Treatment Plants: A Review." Crit. Rev. Environ. Sci. Technol., 41: 915–950.
Lee, T. W., and Jo, W. K. (2002). " Actual commuter exposure to methyl-tertiary butyl ether, benzene and toluene while traveling in Korean urban areas." The Science of the Total Environment, 291(1-3), 219-228.
Melcer, H., and Bedford, W. K. (1994). "Verification of the Fate of A Volatile Organic Compound in Activated Sludge." Water Environ. Res., 66(7), 887-893.
Oskouie, A. K., Lordi, D. T., Granato, T. C., and Kollias, L. (2008). "Plant-specific correlations to predict the total VOC emissions from wastewater treatment plants." Atmos. Environ., 42(19), 4530-4539.
Vergieva, T., Ilieva, P., Popov, T., and Panev, T. (1998). "Aromatic hydrocarbons as reproductive hazards for women in a control laboratory of petrochemical plant." Int Arch Occup Environ. Health, Sep;71 Suppl:S70-4.
WEF (1995). "Toxic Air Emission from Wastewater Treatment Facility." Water Environment Federation, Alexandria, VA.
Wu, B., Feng, T., Sree, U., Chiu, K., and Lo, J. (2006). "Sampling and analysis of volatile organics emitted from wastewater treatment plant and drain system of an industrial science park." Analytica Chimica Acta, 576(1), 100-111.
Yang, W. B., Chen, W. H., Yuan, C. S., Yang, J. C. and Zhao, Q. L. (2012). "Comparative Assessments of VOC Emission Rates and Associated Health Risks from Wastewater Treatment Processes." J. Environ. Monit. 14: 2464–2474.
Yen, C., and Horng, J. (2009). "Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan." Journal of Environmental Science and Health Part A, 44, 1424–1429.
Zhu, H., Keener, T. C., Bishop, P. L., Orton, T. L., and Siddiqui, K. F. (1998). "Emissions of Hazardous Air Pollutants from Aeration Tanks." Env. Progress, 17 (3), 148-153.
許逸群 (2011) “廢水處理池逸散揮發性有機物檢測技術開發”,環保署委託研究報告,EPA-100-1602-02-05,2011 年12 月。
徐樹剛 (2005) “石化及電子工業區聯合污水處理廠揮發性有機物污染調查暨防制措施研訂”,環保署委託研究報告,EPA-93-G105-02-210,2005 年3 月。
林正芬(1999) “逸散性臭味處理技術之評估及管理措施之研擬”,環保署委託研究報告,NSC-88-EPA-Z-002-002,1999 年7 月。
周明顯(1999) “石化廢水處理場惡臭及揮發性有機物防制技術研發”,環保署委託研究報告,NSC-88-EPA-Z-110-001,1999 年6 月。
美國ICE-KE 公司、中鼎工程公司、工研院(1992) “台灣地區北中南高地區空氣污染物排放總量調查及減量規劃”,環保署委託研究報告,EPA-79-002-48-216,1992年3 月。
董天行、何國華(2010)“運作中工廠土壤及地下水含氯有機溶劑污染潛勢調查及查證計畫”,行政院環境保護署,EPA-97-GA102-03-A184,瑞昶科技股份有限公司。
蔡文田、謝國鎔、張元銘(2003) “表面清洗處理業使用含氯揮發性有機溶劑之安全衛生及空氣污染防治評估”,環保資訊月刊第64期。
謝祝欽、何國粱(1999) “石化業廢水處理廠揮發性有機物排放係數研究”,工業污染防治,第69 期,1-24 頁,民國88 年。
趙煥平(2003)“有機物自水中揮發之研究” 國立中央大學環境工程研究所,博士論文。
潘碧珍(1994) “石油及石化工業社區居民癌症死亡率研究”,國立高雄醫學大學醫學研究所,博士論文。
吳亞臻(2011) “長期監測後勁溪中含氯有機溶劑之研究”,國立高雄海洋科技大學海洋環境工程研究所,碩士論文。
蕭文瑞(2007) “後勁溪水中揮發性有機化合物之分布與污染源探討”,國立高雄海洋科技大學海洋環境工程研究所,碩士論文。
田浚致(2004)“利用空氣擴散模式模擬石化工業區致癌性污染物之濃度及推估居民之致癌風險” 國立成功大學環境醫學研究所,碩士論文。
行政院經濟部水利署水利查詢系統
http://www.wra.gov.tw/default.asp?mp=29 2009年。
台灣實驗室網/實驗方法,檢索日期:2011年7月15日,網址:http://www.taiwanlab.com.tw/protocol/show.asp?id=2065。
行政院環境保護署 石油化學專業區污水下水道系統放流水標準 水字第 1000103856 發佈2011.12.01實施2011.12.01。
行政院環境保護署揮發性有機物空氣污染管制及排放標準 空字第 1000009075 2011年2月1日 公告修訂。
行政院環境保護署篩選認定毒性化學物質作業原則 2010年1月18日 公告修訂。
行政院環境保護署(2004)“河川、湖泊及水庫水質採樣通則” NIEA W104.51C。
行政院環境保護署(2005)“環境樣品採集及保存作業指引” NIEA-PA102。
行政院環境保護署(2006)“水中揮發性有機化合物檢測方法-吹氣捕捉/氣相層析質譜儀法” NIEA W785.54B。
行政院環境保護署(2011) “空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法” NIEA A715.12B。
行政院環境保護署毒理資料庫 http://flora2.epa.gov.tw/toxicweb/toxicuc4/database.asp 2009年

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊