跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃品森
研究生(外文):Pin-Sang Huang
論文名稱:成長於矽基材之一維奈米結構電阻效應對場發射特性影響:使用古典傳輸模型模擬研究
論文名稱(外文):Resistance effect on Field Emission for One-dimensional Nanostructures Grown on Silicon Substrates:A Simulation Study Using Classical Transport Model
指導教授:藍永強
指導教授(外文):Yung-Chiang Lan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:124
中文關鍵詞:成長於矽基材一維米結構電阻效應對場發射特性影響使用古典傳輸模型模擬研究
外文關鍵詞:A Simulation StudyUsing Classical Transport ModelResistance effect on Field Emissionfor One-dimensional NanostructuresGrown on Silicon Substrates
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管(Carbon Nanotubes,CNTs)的Fowler-Nordheim(F-N)圖形在高電壓區域常顯示出類似飽和(saturation-like)的現象。此現象歸因於CNTs的電阻效應以及在基板與CNTs之間的界面效應。Jo et al.建立了一道考慮電阻效應的F-N修正方程式,而且他們的模型能藉由調整CNTs的本體(bulk)電阻來擬合實驗數據[52]。本研究使用古典載子傳輸模型來探討成長在矽基材上的一維奈米結構的電阻效應。古典傳輸方程式被用來描述在材料裡的載子傳輸,並且用波松方程式(Poisson equation)來解電位分佈。在發射端與真空界面的場發射用F-N方程式來模擬。本論文的模擬結果顯示出由模擬所得到的F-N圖形也能符合Jo的F-N修正方程式。更重要的是,由一維奈米結構之F-N圖形所得到的電阻值非常接近計算值,此計算值是由模擬中所使用的材料遷移率得到的。再者,界面效應也可視為一個與CNTs的本體電阻作串聯的大電阻器。此外,載子的溫度效應對一維奈米結構中的載子遷移率和電阻的影響亦可由此電阻效應得到解釋。
The Fowler-Nordheim (F-N) plots of the carbon nanotubes (CNTs) often exhibit a saturation-like phenomenon in the high-voltage region. This phenomenon is attributable to the resistance effect of the CNTs and/ or the interface effect between the substrate and CNTs. Jo et al. established a modified F-N equation to take the resistance effect into account. And their model can fit the experiment data well by adjusting the bulk resistance of the CNTs [52]. In this study, the carrier transport model is applied to investigate the resistance effect of the 1-D nanostructure grown on silicon substrate. The classical transport equation is used to describe the carrier transport in the material and solved together with the Poisson,s equation. The field emission at the emitter-vacuum interface is modeled by the F-N equation. My thesis simulation results exhibit that the F-N plots obtained from the simulation can also be fitted well by Jo,s modified F-N equation. And more importantly, the fitted resistance of the 1-D nanostructure is very close to the calculated resistance from the material mobility used in the simulation. Furthermore, the interface effect can also be considered as a large resistor which is in series with the bulk resistance of the 1-D nanostructure. The effect of carrier,s temperature on carrier,s mobility and resistance in the 1-D nanostructure is also examined.
§ 致謝
§ 中文摘要
§ 英文摘要
§ 圖目錄
§ 表目錄
第一章 簡介
1-1 平面顯示器簡介 2
1-2 場發射顯示器簡介 5
1-3 研究目的 10
第二章 文獻回顧
2-1 場發射理論研究回顧 12
2-2 場發射實驗研究回顧 13
第三章 場發射原理與模擬研究方法
3-1 場發射原理 18
3-2 場發射模擬方法 24
3-2-1 ISE TCAD模擬軟體程式 24
3-2-2 研究方法 25
3-2-3 模擬參數設定 28
3-2-3a 電阻效應二維與三維奈米碳管模擬模型與尺寸設定 29
3-2-3b 溫度效應二維與三維奈米碳管模擬模型與尺寸設定 31
第四章 成長於矽基材之二維與三維奈米碳管電阻效應對其場發射特性的模擬結果與討論
4-1 二維與三維奈米碳管的模擬模型格網結構 34
4-2 二維與三維奈米碳管在不同摻雜矽基材之電阻效應對其場發射特性模擬結果與分析 36
4-2-1 二維奈米碳管(CNTs)模擬結果與討論 36
4-2-2 三維奈米碳管(CNTs)模擬結果與分析 42
4-2-3 串聯電阻效應對二維奈米碳管(CNTs)影響的模擬結果與分析    47
第五章 成長於矽基材之二維與三維奈米碳管溫度效應對其場發射特性影響模擬結果與討論
5-1 二維與三維奈米碳管的模擬模型格網結構 51
5-2 二維與三維奈米碳管在不同摻雜矽基材之溫度效應對其場發射特性模擬結果與分析 53
5-2-1 二維奈米碳管(CNTs)模擬結果與討論 53
5-2-2 三維奈米碳管(CNTs)模擬結果與分析 69
第六章 結論 81
參考文獻 83
附錄 88
[1] 財團法人工業技術研究院,  http://www.itri.org.tw/index.jsp
[2] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl. Phys. Lett. 76, 3813 (2000).
[3] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).
[4]  N. Liu, Z. Ma, and X. Chu, J. Vac. Sci. Technol. B 12, 1712 (1994).
[5]  A. A. Dadykin, and A. G. Naumovets, Diamond and Related Materials. 5, 771 (1996).
[6] E. S. Kohn, Appl. Phys. Lett. 41, 76 (1970).
[7] R. J. Harvery, R. A. Lee, and A. J. Miller, IEEE Trans. Electron Devices. 38, 2323 (1991).
[8]N.Liu, Z. Ma, and X.Chu, J. Vac Sci. Technol. B. 12, 1712 (1994).
[9]A. A. Dadykin, and A. G. Naumovets, Diamond and Related Materials. 5, 771 (1996).
[10]A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Appl. Phys. Lett. 76, 3813 (2000).
[11]Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, Appl. Phys. Lett. 70, 3308 (1997).
[12]W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270, 1179 (1995).
[13]Y. Satio, K. Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina, Appl. Phys. A 67, 95 (1998).
[14]J. M. Bonard, J. P. Salvetat, T. Stockli, Walt A. de Heer, L. Forro, and A. Chatelain, Appl. Phys. Lett. 73, 918 (1998).
[15]S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H.Dai, Science 283, 512 (1999).
[16] S. Uemura , J. Yotani , T. Nagasako , H. Kurachi , H. Yamada , T. Ezaki , T.
Maesoba , T. Nakao , Y. Saito , and M. Yumura , IDMC , 75 (2003).
[17]科學發展期刊,2004年10月 382期.
[18] R. K. Fowler and L. W. Nordheim, Proc. Roy. Soc. (London), A 119, 173 (1928).
[19] L. Nordheim, Proc. Roy. Soc. (London), A 121, 626 (1928).
[20] E. W. Müller, Ergeb. Exakt. Naturwiss 27, 290 (1953).
[21] R. H. Good and E. W. Müller, Handbuch der physik 21, 178 (1956).
[22] W. P. Dyke and W. W. Dolan, Advances in Electronics and Electron Physics, Vol. 8, Academic Press: New York, p. 89, 1956.
[23] C. A. Spindt, C. E. Holland, I. Brodie, J. B. Mooney, and E. R. Westerberg, IEEE Trans. Electron Devices ED-36, 225 (1989).
[24] E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).
[25] P. H. Cutler and D. Nagy, Surf. Sci. 3, 71 (1964).
[26] H. Q. Nguyen, P. H. Cutler, T. E. Feuchtwang, N. Miskovsky, and A. A. Lucas, Surf. Sci. 160, 331 (1985).
[27] A. Mayer and J. P. Vigneron, J. Phys. Condens. Matter 10, 896 (1998).
[28] J. He, P. H. Cutler, N. M. Miskovsky, T. E. Feuchtwang, T. E. Sullivan, and M. Chung, Surf. Sci. 241, 348 (1991).
[29] P. H. Cutler, J. He, J. Miller, N. M. Miskovsky, B. Weiss, and T. E. Sullivan, Prog. Surf. Sci. 42, 169 (1993).
[30] R. G. Forbes, J. Vac. Sci. Technol. B 17, 526 (1999).
[31] R. G. Forbes, J. Vac. Sci. Technol. B 17, 534 (1999).
[32] S. G. Christov, Phys. Stat. Sol. 17, 11 (1966).
[33] J. W. Gadzuk and E. W. Plummer, Rev. Mod. Phys. 45, 487 (1973).
[34] R. Stratton, Phys. Rev. 135, A794 (1964).
[35] G. N. Fursey, Appl. Surf. Sci. 94, 44 (1996).
[36] R. Gomer, Field Emission and Field Ionization, American Institute of Physics: New York, 1993. American Vacuum Society Classics.
[37] A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy, Plenum: New York, 1984.
[38] R. F. Greene and H. F. Gray, p-n junction controlled field emitter array
cathodes, US Patent 4513308 (1985).
[39] Wei Zhu, “Vacuum Microelectronics”, by John Wiley & Sons, Inc (2001).
[40] T. Hirano, S. Kanemaru, H. Tanoue, and J. Itoh, Jpn. J. Appl. Phys. 34, 6907 (1995).
[41] T. Matsukawa, S. Kanemaru, K. Tokunaga, and J. Itoh, J. Vac. Sci. Technol. B, Vol. 18, 1111 (2000).
[42] C. S. Chang, S. Chattopadhyay, L. C. Chen, K. H. Chen, C. W. Chen,
Y. F. Chen, R. Collazo and Z. Sitar, PHYSICAL REVIEW B 68, 125322 (2003)
[43]T. K. Ku, M. S. Chen, C. C. Wang, M. S. Feng, L. J. Hsieh, C. M. Huang, and H. C. Cheng, Jpn. J. Appl. 35, 5789 (1995).
[44]A. Modinos, Plenum Press, New York (1938).
[45]C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, “A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices”, IEEE Transactions on CAD, Vol. 7, no. 11, pp. 1164–1171, 1988.
[46]G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility against carrier concentration in Arsenic-, Phosphorus- and Boron-doped Silicon”, IEEE Transactions on Electron Devices, Vol. ED-30, pp. 764–769, 1983.
[47] C. Canali, G. Majni, R. Minder, and G. Ottaviani, “Electron and hole drift
velocity measurements in Silicon and their empirical relation to electric field and temperature,” IEEE Transactions on ElectronDevices, Vol. ED-22, pp. 1045–1047, 1975.
[48]J. W. Slotboom and H. C. de Graaff, “Measurements of Bandgap Narrowing in Si Bipolar Transistors” , Solid-State Electronics, Vol. 19, pp. 857–862, 1976.
[49] J. W. Slotboom and H. C. de Graaff, “Bandgap Narrowing in Silicon Bipolar Transistors”, IEEE Transactions on Electron Devices, Vol. ED-24, no. 8, pp. 1123–1125, 1977.
[50] J. W. Slotboom, “The pn-Product in Silicon”, Solid-State Electronics, Vol. 20, pp. 279–283, 1977.
[51] D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent bandgap narrowing in n- andp-type Silicon,” Solid-State Electronics, Vol. 35, no. 2, pp. 125–129, 1992.
[52] S. H. Jo, S. I. Jung and C. J. Lee, Technical Digest of 19th Internal Vacuum
Nanoelectronics Conference (IVNC2006), p. 315 (2006).
[53] M. Sveningsson, M. Jönsson, O. A. Nerushev, F. Rohmund, and E. E. B.
Campbell, Appl. Phys. Lett., 81, 1095, 2002.
[54] K. A. Dean and B. R. Chalamala, Appl. Phys. Lett., 76, 375, 2000.
[55] S. T. Purcell, P. Vincent, C. Journet, and V. T. Binh, Phys. Rev. Lett., 88,
105502, 2002.
[56] P. Li, K. Jiang, M. Liu, Q. Li, S. Fan, and J. Sun, Appl. Phys. Lett., 82, 1763,
2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文