|
[1-1] S. Shafiee, E. Topal, “When will fossil fuel reserves be diminished?,” Energy policy 37, pp. 181-189 (2009) [1-2] D.M. Chapin, C.S. Fuller, G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, pp. 676 (1954) [1-3] M. Gratzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” Philos. Trans. R. Soc. London, Ser. A 365, pp. 993-1005 (2007) [1-4] H. W. Hillhouse, M. C. Beard, “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics,” Current Opinion in Colloid & Interface Science 14, pp. 245-259 (2009) [1-5] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 37) ,” Prog. Photovolt: Res. Appl. 19, pp. 84-92 (2011) [1-6] M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Res. Appl. 9, pp. 123-135 (2001) [1-7] M. A. Green, “Recent developments and future prospects for third generation and other advanced cells,” 4th WCPEC (32nd IEEE-PVSC), Hawaii, pp. 7-12 (2006) [1-8] E. C. Cho, M. A. Green, G. Conibeer, D. Y. Song, Y. H. Cho, G. Scardera, S. J. Huang, S. Park, X. J. Hao, Y. D. Huang, and L. V. Dao, “Silicon quantum dots in a dielectric matrix for all-Si tandem solar cells,” Adv. Optoelectron., pp. 69578/1–69578/11 (2007) [1-9] M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. Young, B. Egass, R.Noufi, “Diode characteristics in state-of-the-art ZnO/CdS/CuIn(1_x)GaxSe2 solar cells,” Progress in Photovoltaics 13, pp. 209-216 (2005) [1-10] M.A. Green, “Third generation photovoltaics : advanced solar energy conversion,” Springer, Berlin, Germany (2003) [1-11] M.A. Green, E. C. Cho, Y .H. Cho, E. Pink, T. Trupke, K.L. Lin, T. Fangsuwannarak, T. Puzzer, G. Conibeer and R.Corkish, “All-silicon tandem cells based on ‘artificial’ semiconductor synthesised using silicon quantum dots in a dielectric matrix” Proc. 20th European Photovoltaic Solar Energy Conf. (Barcelona, Spain), pp. 3 (2005) [1-12] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, pp. 041301-0415403 (2005) [1-13] Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378, pp. 258–260 (1995) [1-14] T. Shimizu-Iwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Applied Physics Letters 65, pp. 1814–1816 (1994) [1-15] E.-C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S.-C.l Park and M.A. Green, “Silicon quantum dot/crystalline silicon solar cells,” Nanotechnology 19, pp. 245201 (2008) [1-16] S. Park, E. Cho, D. Song, G. Conibeer and M.A. Green, “n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells”, Sol. Energy Mater. Sol. Cells 93, pp. 684 (2009) [1-17] L. Ding, T.P. Chen, Y. Liu, C.Y. Ng and S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, pp. 125419 (2005) [1-18] Y. Cho, E.-C. Cho, Y. Huang, T. Trupke, G. Conibeer, and M. A. Green, “Silicon quantum dots in SiNx matrix for third generation photovoltaics,” 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, pp. 47 (2005) [1-19] D. Song, E.–C. Cho, G. Conibeer, C. Flynn, Y. Huang and M.A. Green, “Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices,” Sol. Energy. Mater. Sol. Cells 92, pp. 474 (2008) [2-1] G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett. 56, pp.930 (1986) [2-2] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, “Scanning Electron Microscopy and X-ray Microanalysis, a text for biologists,” materials scientists and geologists; Plenum Press: New York (1992) [2-3] D. B. Williams and C. B. Carter, “Transmission Electron Microscopy,” Materials Science Plenum, New York (1996) [2-4] G. Coa, “Nanostructures & Nanomaterials, Synthesis, Properties & Applications,” Imperial College Press (2004) [2-5] C. R. Brundle, C. A. Evans, and S. Wilson, “Encyclopedia of Materials Characterization, Surface, Interface,” Thin films, Butterworth-Heinedmann, USA, (1992) [2-6] C. V. Raman, and K. S. Krishna , “ A new type of secondary radiation,” Nature 121, (1928) [3-1] S. A. Studenikin et al., “Optical and Electrical Properties of Undoped ZnO Films Grown by Spray Pyrolysis of Zinc Nitrate Solution,” J. Appl. Phys. 83, pp. 2104-2111 (1998) [3-2] N.R. Aghamalyan, I.A. Gambaryan, E.K. Goulanian, R.K. Hovsepyan, R.B. Kostanyan, S.I. Petrosyan, E.S. Vardanyan, A.F. Zerrouk: Semicond. Sci. Technol. 18, 525 (2003) [3-3] M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101, pp. 103504-103507 (2007) [3-4] D. Jijun, C. Haixia, Z. Xinggang, and M. Shuyi, “Effect of substrate and annealing on the structural and optical properties of ZnO:Al films,” J. Phys. Chem. Solids 71, pp. 346-350 (2010) [3-5] M. Zacharias, J. Bla‥sing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattices,” Appl. Phys. Lett. 74, pp. 2614-2616 (1999) [3-6] V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering,” Phys. B 404, pp. 4827-4830 (2009) [3-7] J.W. Lee, J.H. Choi, S.K. Han, S.M. Yang, S.K. Hong and J.Y. Lee, “Effects of Zn pre-exposure temperature on the microstructures of ZnO films grown on Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy”, J. Crystal Growth 310, pp. 1118 (2008)
|