跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許書維
研究生(外文):Hsu, Shu-Wei
論文名稱:可應用於太陽能電池之奈米結晶矽量子點埋入式氧化鋅薄膜之特性研究
論文名稱(外文):Characteristics of the Nano-crystalline Si Quantum Dot Embedded ZnO Thin Films for Solar Cell Applications
指導教授:李柏璁李柏璁引用關係
指導教授(外文):Lee, Po-Tsung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:62
中文關鍵詞:矽量子點氧化鋅濺鍍
外文關鍵詞:Si quantum dotZnOsputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
目前在矽量子點太陽能電池的研究,其矽量子點皆埋入絕緣介質中,造成電荷傳導上的不易,因而侷限住整體的光電轉換效率。因此在本篇論文,我們提出利用氧化鋅來取代傳統的絕緣介質,因為它不但是半導體,易於電荷傳導外,更具備其他特性,例如擁有大的能隙、高的穿透率、好的結晶性、以及易於調控的電性等等,諸如以上優點,將奈米結晶矽量子點埋入氧化鋅材料中製作出的矽量子點太陽能電池非常有發展潛力。
  首先我們以磁控濺鍍機交替沉積氧化鋅與矽的多層膜,在第一部分以快速升溫退火使矽量子點結晶,並利用來曼光譜與X光繞射圖譜分別確認奈米結晶矽量子點的形成與氧化鋅的結晶品質,並分析其光電特性。我們發現在較高的矽濺鍍功率下,矽原子擁有較高的表面移動動能,因此在沉積的過程便能自我聚集,在後續的高溫退火下,易於形成奈米結晶矽量子點,並得到較佳的氧化鋅薄膜結晶品質。第二部份改用爐管進行高溫退火使矽量子點結晶,是為了解決使用快速升溫退火所產生的部分問題。而在爐管退火後我們可以得到不錯的整流比與光響應。
  最後一部分,我們就退火後薄膜產生很大的應力造成薄膜的剝離進行分析並試圖找尋解決方法。我們發現利用升溫製程可望解決退火後因應力造成薄膜彎曲的問題。

Researches of Si quantum dot (QD) thin film solar cell is fabricated by using nanocrystal silicon (nc-Si) QD embedded in the Si-based dielectric material. However the experimental results are still substantially lower than the theoretical value due to the unfavorable material characteristics of these Si-based matrices, that is, they are not electrically conductive. In this thesis, we propose to use Zinc oxide (ZnO) as the substitutable matrix material due to its many potential applications and unique features over other conventional wide band gap semiconductors such as high transparency, nice crystallinity, and easiness to control the electrical properties. Hence, ZnO is a suitable material to serve as the matrix for nano-crystalline Si thin film solar cells
We deposited ZnO/Si multilayer thin films by radio-magnetron sputtering. At first part, the nc-Si QD formed after annealing by rapid thermal annealing thermal process. Then we investigated the nc-Si formation and crystalline quality of ZnO thin films by analyses of Raman spectra and XRD patterns. Optical-electrical properties of the multilayer thin films after annealing are also investigated. We observe that the sputtered Si atoms have more kinetic energy to aggregate together as Si nano-clusters under higher Si sputtering power. An obvious aggregation of the sputtered Si atoms during deposition is helpful for the formation of nc-Si and the better crystallization of the ZnO matrix in the nc-Si embedded ZnO thin films during the RTA process. At second part, we substitute RTA to furnace as our new thermal treatment equipment to solve some problems cause by RTA thermalprocess. Then, we observe good rectification ratio and better photon response after annealing by furnace.
At the last part, we try to solve the film bending problem cause by the high stress interior the films after annealing. We observe film bending problem may be solved with a heated substrate during deposition.

Chapter 1 Introduction
1.1 Background 1
1.2 Nano-crystalline Si Quantum Dots for Third Generation Solar Cell 2
1.2.1 Concept of the Third Generation Solar Cell 2
1.2.2 Principles of Si Quantum Dot Thin Film Solar Cell 4
1.3 Paper Review 5
1.3.1 Characteristics of ZnO Thin Film and ZnO/Si Hetrojunction Solar Cell 5
1.3.2 Silicon Quantum Dot Solar Cells 6
1.4 Experimental Motivation 10

Chapter 2 Sample Preparation and Analyses
2.1 Sample Preparation 14
2.1.1 Substrate Clean 14
2.1.2 Thin Film Deposition 15
2.1.3 Post Annealing Method 16
2.1.4 Electrode Deposition 17
2.2 Sample Analyses 18
2.2.1 Surface Morphology 18
2.2.2 Structural properties 20
2.2.3 Crystalline property 21
2.2.4 Optical Property 23
2.2.5 Electrical Property 24

Chapter 3 Experimental Results and Discussions
3.1 ZnO Thin Films 27
3.2 ZnO/Si Multilayer Thin Films with Rapid Thermal Annealing 30
3.2.1 Structural Properties 30
3.2.2 Crystalline Properties of Nano-crystalline Si Quantum Dot 31
3.2.3 Crystalline Properties of ZnO Matrix 33
3.2.4 Influence of Surface Morphology 34
3.2.5 Electrical Properties 36
3.2.6 Problems during Rapid Thermal Annealing Process 39
3.3 ZnO/Si Multilayer Thin Films with Furnace Annealing Process 40
3.3.1 Different Annealing Temperature 41
3.3.2 Structural Properties 44
3.3.3 Crystalline Properties of Nano-crystalline Si Quantum Dot 44
3.3.4 Crystalline Properties of ZnO Matrix 46
3.2.5 Electrical Properties 47
3.2.6 Problems during Furnace Annealing Process 49
3.4 Solutions for Film Bending Problem 51
3.4.1 Decreasing the Pairs of Multilayer 52
3.4.2 Decreasing the Interior Stress Density of Multilayer 53
3.4.3 Deposition with a Heated Substrate 58
Chapter 4 Conclusion and Future Work
4.1 Conclusion 60
4.2 Future Work 62

[1-1] S. Shafiee, E. Topal, “When will fossil fuel reserves be diminished?,” Energy policy 37, pp. 181-189 (2009)
[1-2] D.M. Chapin, C.S. Fuller, G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, pp. 676 (1954)
[1-3] M. Gratzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” Philos. Trans. R. Soc. London, Ser. A 365, pp. 993-1005 (2007)
[1-4] H. W. Hillhouse, M. C. Beard, “Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics,” Current Opinion in Colloid & Interface Science 14, pp. 245-259 (2009)
[1-5] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 37) ,” Prog. Photovolt: Res. Appl. 19, pp. 84-92 (2011)
[1-6] M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Res. Appl. 9, pp. 123-135 (2001)
[1-7] M. A. Green, “Recent developments and future prospects for third generation and other advanced cells,” 4th WCPEC (32nd IEEE-PVSC), Hawaii, pp. 7-12 (2006)
[1-8] E. C. Cho, M. A. Green, G. Conibeer, D. Y. Song, Y. H. Cho, G. Scardera, S. J. Huang, S. Park, X. J. Hao, Y. D. Huang, and L. V. Dao, “Silicon quantum dots in a dielectric matrix for all-Si tandem solar cells,” Adv. Optoelectron., pp. 69578/1–69578/11 (2007)
[1-9] M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. Young, B. Egass, R.Noufi, “Diode characteristics in state-of-the-art ZnO/CdS/CuIn(1_x)GaxSe2 solar cells,” Progress in Photovoltaics 13, pp. 209-216 (2005)
[1-10] M.A. Green, “Third generation photovoltaics : advanced solar energy conversion,” Springer, Berlin, Germany (2003)
[1-11] M.A. Green, E. C. Cho, Y .H. Cho, E. Pink, T. Trupke, K.L. Lin, T. Fangsuwannarak, T. Puzzer, G. Conibeer and R.Corkish, “All-silicon tandem cells based on ‘artificial’ semiconductor synthesised using silicon quantum dots in a dielectric matrix” Proc. 20th European Photovoltaic Solar Energy Conf. (Barcelona, Spain), pp. 3 (2005)
[1-12] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, pp. 041301-0415403 (2005)
[1-13] Z. H. Lu, D. J. Lockwood, and J.-M. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378, pp. 258–260 (1995)
[1-14] T. Shimizu-Iwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide films on crystalline Si,” Applied Physics Letters 65, pp. 1814–1816 (1994)
[1-15] E.-C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S.-C.l Park and M.A. Green, “Silicon quantum dot/crystalline silicon solar cells,” Nanotechnology 19, pp. 245201 (2008)
[1-16] S. Park, E. Cho, D. Song, G. Conibeer and M.A. Green, “n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells”, Sol. Energy Mater. Sol. Cells 93, pp. 684 (2009)
[1-17] L. Ding, T.P. Chen, Y. Liu, C.Y. Ng and S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, pp. 125419 (2005)
[1-18] Y. Cho, E.-C. Cho, Y. Huang, T. Trupke, G. Conibeer, and M. A. Green, “Silicon quantum dots in SiNx matrix for third generation photovoltaics,” 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, pp. 47 (2005)
[1-19] D. Song, E.–C. Cho, G. Conibeer, C. Flynn, Y. Huang and M.A. Green, “Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices,” Sol. Energy. Mater. Sol. Cells 92, pp. 474 (2008)
[2-1] G. Binnig, C. F. Quate, C. Gerber, “Atomic Force Microscopy,” Phys. Rev. Lett. 56, pp.930 (1986)
[2-2] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, “Scanning Electron Microscopy and X-ray Microanalysis, a text for biologists,” materials scientists and geologists; Plenum Press: New York (1992)
[2-3] D. B. Williams and C. B. Carter, “Transmission Electron Microscopy,” Materials Science Plenum, New York (1996)
[2-4] G. Coa, “Nanostructures & Nanomaterials, Synthesis, Properties & Applications,” Imperial College Press (2004)
[2-5] C. R. Brundle, C. A. Evans, and S. Wilson, “Encyclopedia of Materials Characterization, Surface, Interface,” Thin films, Butterworth-Heinedmann, USA, (1992)
[2-6] C. V. Raman, and K. S. Krishna , “ A new type of secondary radiation,” Nature 121, (1928)
[3-1] S. A. Studenikin et al., “Optical and Electrical Properties of Undoped ZnO Films Grown by Spray Pyrolysis of Zinc Nitrate Solution,” J. Appl. Phys. 83, pp. 2104-2111 (1998)
[3-2] N.R. Aghamalyan, I.A. Gambaryan, E.K. Goulanian, R.K. Hovsepyan, R.B. Kostanyan, S.I. Petrosyan, E.S. Vardanyan, A.F. Zerrouk: Semicond. Sci. Technol. 18, 525 (2003)
[3-3] M. Wang, D. Yang, D. Li, Z. Yuan, and D. Que, “Correlation between luminescence and structural evolution of Si-rich silicon oxide film annealed at different temperatures,” J. Appl. Phys.101, pp. 103504-103507 (2007)
[3-4] D. Jijun, C. Haixia, Z. Xinggang, and M. Shuyi, “Effect of substrate and annealing on the structural and optical properties of ZnO:Al films,” J. Phys. Chem. Solids 71, pp. 346-350 (2010)
[3-5] M. Zacharias, J. Bla‥sing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattices,” Appl. Phys. Lett. 74, pp. 2614-2616 (1999)
[3-6] V. Pankratov, V. Osinniy, A. Nylandsted Larsen, and B. Bech Nielsen, “ZnO nanocrystals/SiO2 multilayer structures fabricated by RF-magnetron sputtering,” Phys. B 404, pp. 4827-4830 (2009)
[3-7] J.W. Lee, J.H. Choi, S.K. Han, S.M. Yang, S.K. Hong and J.Y. Lee, “Effects of Zn pre-exposure temperature on the microstructures of ZnO films grown on Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy”, J. Crystal Growth 310, pp. 1118 (2008)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊