|
[ABE07] D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computation of medial axes: a state of the art report. In B. Hamann T. Mぴoller and B. Russell, editors, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. 2007. [AC97] N. Ahuja and J.-H. Chuang. Shape representation using a generalized potential field model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):169–176, 1997. [ACK00] N. Amenta, S. Choi, and R. K. Kolluri. The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications, 19:127–153, 2000. [AHY94] G.H. Abdel-Hamid and Y. H. Yang. Multiresolution skeletonization: An electro-static field-based approach. In ICIP (1), pages 949–953, 1994. [ATC+08] K. C. Au, C. L. Tai, H. K. Chu, D. C. Cohen-Or, and T. Y. Lee. Skeleton extraction by mesh contraction. In ACM SIGGRAPH 2008, pages 1–10. ACM, 2008. [BA95] G. Bertrand and Z. Aktouf. Three-dimensional thinning algorithm using subfields. volume 2356, pages 113–124. SPIE, 1995. [BKS01] I. Bitter, A. E. Kaufman, and M. Sato. Penalized-distance volumetric skeleton algorithm. IEEE Transactions on Visualization and Computer Graphics, 7(3):195–206, 2001. [Blu67] H. Blum. A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Form, pages 362–380, 1967. [BSB+00] I. Bitter, M. Sato, M. Bender, K. T. McDonnell, A. Kaufman, and M. Wan. Ceasar: Accurate and robust algorithm for extracting a smooth centerline. Washington, DC, USA, 2000. IEEE Computer Society. [CCZ07] M. Couprie, D. Coeurjolly, and R. Zrour. Discrete bisector function and euclidean skeleton in 2d and 3d. Image Vision Comput., 25(10):1543–1556, 2007. [CSM07] N. D. Cornea, D. Silver, and P. Min. Curve-skeleton properties, applications, and algorithms. IEEE Transactions on Visualization and Computer Graphics, 13(3):530–548, 2007. [CSYB05] N.D. Cornea, D. Silver, X.S. Yuan, and R. Balasubramanian. Computing hierarchical curve-skeletons of 3d objects. 21(11):945–955, October 2005. [CTK00] J. H. Chuang, C. H. Tsai, and M. C. Ko. Skeletonization of three-dimensional object using generalized potential field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1241–1251, 2000. [DS06] T. K. Dey and J. Sun. Defining and computing curve-skeletons with medial geodesic function. In Proceedings of the fourth Eurographics symposium on Geometry processing, pages 143–152, Aire-la-Ville, Switzerland, 2006. Eurographics Association. [DZ04] T. K. Dey and W. Zhao. Approximating the medial axis from the voronoi diagram with a convergence guarantee. Algorithmica, 38:387–398, 2004. [GAHY96] T. Grigorishin, G. Abdel-Hamid, and Y. H. Yang. Skeletonization: An electrostatic field-based approach. Technical report, 1996. [GB90] W. Gong and G. Bertrand. A simple parallel 3d thinning algorithm. volume i, pages 188–190 vol.1, Jun 1990. [Gre03] R. Green. Spherical harmonic lighting: The gritty details. Archives of the Game Developers Conference, March 2003. [HJWC09] T. C. Ho, H. X. Ji, S. K. Wong, and J. H. Chuang. Mesh skeletonization using minimum slice perimeter function. In Proceedings of CGW, 2009. [Kon97] T. Y. Kong. Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary images. In DGCI, pages 3–18, 1997. [KR89] T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer Vision, Graphics, and Image Processing, 48(3):357–393, December 1989. [LB01] C. Lohou and G. Bertrand. A new 3d 12-subiteration thinning algorithm based on p-simple points. Electronic Notes in Theoretical Computer Science, 46:33 – 52, 2001. IWCIA 2001, 8th International Workshop on Combinatorial Image Analysis. [LL92] F. Leymarie and M.D. Levine. Simulating the grassfire transform using an active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(1):56–75, 1992. [LWM+03] P. C. Liu, F. C. Wu, W. C. Ma, R. H. Liang, and M. Ouhyoung. Automatic animation skeleton construction using repulsive force field. In In Pacific Graphics, pages 409–413, 2003. [Mor81] D. Morgenthaler. Three-dimensional simple points: serial erosion, parallel thinning, and skeletonization. Technical report, Computer Vision Lab, University of Maryland, 1981. [MWL02] C. M. Ma, S. Y. Wan, and J. D. Lee. Three-dimensional topology preserving reduction on the 4-subfields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12):1594–1605, 2002. [OI92] R. Ogniewicz and M. Ilg. Voronoi skeletons: Theory and applications. In in Proc. Conf. on Computer Vision and Pattern Recognition, pages 63–69, 1992. [OK95] R. L. Ogniewicz and O. Kbler. Hierarchic voronoi skeletons, 1995. [PK98] K. Palagyi and A. Kuba. A 3d 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters, 19(7):613 – 627, 1998. [PK99a] K. Pal′agyi and A. Kuba. Directional 3d thinning using 8 subiterations. In DGCI, pages 325–336, 1999. [PK99b] K. Pal′agyi and A. Kuba. A parallel 3d 12-subiteration thinning algorithm. Graphical Models and Image Processing, 61(4):199–221, 1999. [Pud98] C. Pudney. Distance-ordered homotopic thinning: a skeletonization algorithm for 3d digital images. Comput. Vis. Image Underst., 72(3):404–413, 1998. [RT95] J. M. Reddy and G. M. Turkiyyah. Computation of 3d skeletons using a generalized delaunay triangulation technique. Computer-Aided Design, 27(9):677–694, 1995. [SBB+00] M. Sato, I. Bitter, M. A. Bender, A. E. Kaufman, and M. Nakajima. Teasar: Tree-structure extraction algorithm for accurate and robust skeletons. In Proceedings of the 8th Pacific Conference on Computer Graphics and Applications, page 281, Washington, DC, USA, 2000. IEEE Computer Society. [SC94] P. K. Saha and B. B. Chaudhuri. Detection of 3-d simple points for topology preserving transformations with application to thinning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(10):1028–1032, 1994. [SLSK07] A. Sharf, T. Lewiner, A. Shamir, and L. Kobbelt. On-the-fiy curve-skeleton computation for 3d shapes. Comput. Graph. Forum, 26(3):323–328, 2007. [SSCO08] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput., 24(4):249–259, 2008. [TVD08] J. Tierny, J.-P. Vandeborre, and M. Daoudi. Enhancing 3d mesh topological skeletons with discrete contour constrictions. The Visual Computing., 24(3):155–172, 2008. [TZCO09] A. Tagliasacchi, H. Zhang, and D. Cohen-Or. Curve skeleton extraction from in-complete point cloud. ACM Transactions on Graphics, (Proceedings SIGGRAPH 2009), 28(3):1–9, 2009. [WDK01] Mi. Wan, F. Dachille, and A. Kaufman. Distance-field based skeletons for virtual navigation. In Proceedings of the conference on Visualization ’01, pages 239–246, Washington, DC, USA, 2001. IEEE Computer Society. [WML+03] F.-C. Wu, W. C. Ma, P. C. Liou, R. H. Laing, and M. Ouhyoung. Skeleton extraction of 3d objects with visible repulsive force, 2003. [WML+06] F. C. Wu, W. C. Ma, R. H. Liang, B. Y. Chen, and M. Ouhyoung. Domain connected graph: the skeleton of a closed 3d shape for animation. The Visual Computer, 22(2):117–135, 2006. [YBM04] Y. Yang, O. Brock, and R. N. Moll. Efficient and robust computation of an approximated medial axis. In In Proceedings of the ACM Symposium on Solid Modeling and Applications, pages 15–24, 2004.
|