1.Abdel-Rahman, K. and Achmus, M. (2005), Finite Element Modelling of Horizontally Loaded Monopile Foundations for Offshore Wind Energy Converters in Germany. International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Perth, Australia, Taylor & Francis, London, 309-396.
2.Aliasger Haiderali and Gopal Madabhushi (2012), Three-Dimensional Finite Element Modelling of Monopiles for Offshore Wind Turbines. The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM’ 12), Seoul, Korea, August 26-30, 2012.
3.American Petroleum Institute (API) (2000), Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design. API Recommended Practice 2A-WSD (RP2A-WSD), 21st edition, Washington DC.
4.Bhattacharya, S., Wood, D.M., and Lombardi, D. (2011), “Similitude relationships for physical modelling of mono pile-supported offshore wind turbines.” International Journal of Physical Modelling in Geotechnics, Vol.11, No.2, pp. 58-68.
5.Bowles J. (1992), Engineering properties of soil and their measurements. 4th edition, McGraw-Hill, Boston, MA.
6.Broms, B. (1965), “Design of laterally loaded piles.” Journal of Soil Mechanics and Foundation Division, ASCE 91, No. SM3, 79-99.
7.Brown, D.A. and Shie, C.F. (1990). “Numerical experiments into group effects on the response of piles to lateral loading.” Computers and Geotechnics, 10 (3): 211-230.
8.Budhu, M.,(2000), “Soil Mechanics and Foundations”, Wiley, pp. 84-89.
9.Byrne, B.W. and Houlsby, G.T. (2003), “Foundations for Offshore Wind Turbines.” Philosophical Transactions of the Royal Society of London, Series A, Vol. 361, December, pp. 2909-2930.
10.Coduto, D. P. (1994). Foundation Design, Principles, and Practices. Prentice-Hall, Englewood Cliffs, N.J., 796 pp.
11.Coyle, H. M., and Castello, R. (1981), “New Design Correlations for Piles in Sand.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT 7, pp. 965-986.
12.Das, Braja M., (2011), Principles of Foundation Engineering, 7th edition, Thomson, Toronto.
13.de Vries W. E., and van der Tempel J. (2007), Quick Monopile Design. Proceedings, European Offshore Wind Conference, Berlin, Germany.
14.Design Manual 7.2. (1982), Foundation and earth structures. US Navy, Washington, DC.
15.Det Norske Veritas (DNV) (2004), Design of Offshore Wind Turbine Structures, Offshore Standard DNV-OS-J101, Jun 2004.
16.Duncan, J.M., Chang, C.Y. (1970), Nonlinear Analysis of Stress and Strain in Soils. Journal of Soil Mech, Fdns Div., ASCE, Vol. 96, No. SM 5, pp. 1629-1653.
17.Dunham, J.W. (1954), “Pile Foundations for Buildings.” Proc. ASCE, Soil Mechanics and Foundation Division.
18.Dunnavant, T.W. and O’Neill, M.W. (1989), “Experimental p-y model for submerged stiff clay.” Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 1, pp. 95-114.
19.Germanischer Lloyd (GL) (2010), “Guideline for the Certification of Wind Turbines.” Edition 2010, Hamburg, Germany.
20.Hammar, L., Andersson, S., and Rosenberg, R. (2010), Adapting offshore wind power foundations to local environment. translated by Dimming, A., Vindval report 6367, (Broma).
21.Hardin, B.O., Drnevich, V.P. (1972), Shear Modulus and Damping in Soils: Design Equations and Curves. Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, pp. 667-692.
22.International Electrotechnical Commission (IEC) (2005), Wind Turbines-Part 1: Design Requirements. International Standard: IEC 61400-1, Edition 3.0.
23.International Electrotechnical Commission (IEC) (2009), Wind Turbines-Part 3: Design Requirements for Offshore Wind Turbines. International Standard: IEC 61400-3.
24.International Organization for Standardization (ISO) (2003), Petroleum and Natural Gas Industries-Specific Requirements for Offshore Structures-Part 4: Geotechnical and Foundation Design Considerations. International Standard ISO 19901-4.
25.Janbu, N. (1963), Soil compressibility as determined by oedometer and triaxial tests. Proc. ECSMFE, Wiesbaden, 1:19-25.
26.Jeong, S., Kim, Y., and Kim, J., (2011), “Influence on lateral rigidity of offshore piles using proposed p-y curves.” Ocean Engineering, Vol.38, pp.397-408.
27.Jonkman, J.M., Butterfield, S., Musial, W., and Scott, G. (2009), Definition of a 5-MW Reference Wind Turbine for Offshore System Development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, Golden, CO, USA.
28.Kondner, R.L. (1963), A Hyperbolic Stress Strain Formulation for Sands. Proc. 2nd Pan American ICOSFE, Vol. 1, pp. 289-324, Brazil.
29.Kourkoulis R., Gelagoti F. and Kaynia A. (2012), Seismic Response of offshore wind turbine foundations. 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
30.Krolis, V.D., van der Tempel, J. and de Vries, W. (2007), Evaluation of foundation design for monopile support structures for offshore wind turbines. European Offshore Wind Conference 2007, 7 pp., Germany.
31.Lesny, K. (2008), Foundations for offshore wind energy converters-Recommendations for concept and design. BAUTECHNIK, 85(8), 503-511.
32.Matlock, H. (1970). Correlation for Design of Laterally Loaded Piles in Soft Clays. Paper No. OTC 1204, Proceedings, Second Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp. 577-594.
33.Meyerhof, G.G. (1976), Bearing capacity and settlement of pile foundations, Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT3, pp. 195-228.
34.Murchison J.M., and O''Neill M.W. (1984), Evaluation of p-y relationships in cohesionless soils. Analysis and Design of Pile Foundations. Proceedings of a Symposium in conjunction with the ASCE National Convention, pp. 174-191.
35.Reese, L.C., Cox, W.R., and Koop, F.D. (1974), Analysis of Laterally Loaded Piles in Sand. Proceedings of the Fifth Annual Offshore Technical Conference, Vol. II, Paper OTC 2080, Houston, Texas, pp. 473-485.
36.Santos, J.A., Correia, A.G. (2001), “Reference threshold shear strain of soil, its application to obtain a unique strain-dependent shear modulus curve for soil.” In Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 1, A.A. Balkema, Istanbul, pp. 267-270.
37.Schanz, T. and Vermeer, P.A. (1998), Special issue on pre-failure deformation behaviour of geomaterials. Geotechnique, 48, pp. 383-387.
38.Schmertmann, J.H., Hartmann, J.P. and Brown, P.R. (1978), Improved strain influence factor diagrams. Journal of the Geotechnical Engineering Division, ASCE, 104(8): 1131-1135.
39.Siegfriedsen, S., Lehnhoff M., and Prehn A. (2003), Primary markets for offshore wind energy outside the European Union, Wind Engineering, 27, pp. 419-429.
40.S?rensen, S.P.H., Br?dbaek, K.T., and M?ller, M. (2009), Evaluation of Load-Displacement Relationships for Large-Diameter Piles. Long Candidate Project, Aalborg University, Aalborg, Denmark.
41.Stavros Savidis, Ercan Taşan H. and Frank Rackwitz (2011), “Numerical Investigation of Monopile Behavior due to Wind and Water Wave Loading.” Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, S. 3469-3475.
42.Supachawarote C., Randolph M.F. and Gourvenec S. (2004), “Inclined pull-out capacity of suction caissons.” Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France.
43.TANG Xiao-wei, SHAO Qi and LIU Bing-xue (2011), 3D FEM analysis on bearing capacity behaviors of tri-piles foundation for offshore wind turbines. Multimedia Technology (ICMT), 2011 International Conference, IEEE, pp. 941-944.
44.Vesic, A.S. (1973), “Analysis of ultimate loads of shallow foundations.” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 99, No. SM1, pp. 45-73.
45.Vijayvergiya, V.N. and Focht, J.A. Jr. (1972), “A new way to predict the capacity of piles in clay.” 4th Annual Offshore Technology Conference, Houston, Vol. 2, pp. 865-874.
46.Wu Ke, Chen Rong and Li Shucai (2009), Finite element modeling of horizontally loaded monopile foundation of large scale offshore wind turbine in non-homogeneity clay. [C], WRI World Congress on Software Engineering, 2:329-333.
47.丁紅岩、翟少華、張浦陽(2013),「海上風電大尺度頂承式筒型基礎承載力特性有限元分析」,工程力學,2013年06期,pp.124-132。
48.工研院綠能與環境研究所(2010),「台灣陸海域風能潛力評估」。
49.內政部營建署(2001),「建築物基礎構造設計規範」,營建雜誌社。
50.王志雲、王忠濤、欒茂田、王棟(2008),「吸力式沉箱基礎極限拉拔承載力的數值分析」,岩土力學,29(6):1545-1550。
51.王俊嶺、閆澍旺、霍知亮(2013),「複合載入模式下海上風機樁基礎破壞機制研究」勘察科學技術,2013年第1期。
52.交通部運輸研究所(2005),「港灣構造物設計基準修訂」,ISBN:986-00-0557-5。
53.朱斌、朱瑞燕、羅軍、陳仁朋、孔令剛(2010)「海洋高樁基礎水平大變位性狀模型試驗研究」,岩土工程學報,32(4):521-530。
54.朱斌、熊根、劉晉超、孫永鑫、陳仁朋(2013),「砂土中大直徑單樁水平受荷離心模型試驗」,岩土工程學報,35(10):1807-1815。
55.吳元康、王醴、林輝政、柯裕隆(2010),「國外離岸風場政策與簡介」,國科會能源國家型科技計畫之離岸風力主軸計畫。
56.林郁庭(2013),「以離心模型模擬離岸風機單樁受反覆水平側推之p-y曲線」,國立中央大學土木工程學研究所,碩士論文。57.段鄖峰(2010),「海上風電場風機基礎的選型設計」,水利與建築工程學報,8(1):129-131,十堰市建設委員會。
58.范慶來、欒茂田(2010),「V-H-T荷載空間內海上風機桶形基礎破壞包絡面特性分析」,土木工程學報,43(4):113-118。
59.袁志林、段夢蘭、陳祥余、鐘超、王建國(2012),「水平荷載下導管架平台樁基礎的非線性有限元分析」,岩土力學,33(8):2551-2560。
60.張永利、周勇、李傑(2010),「東海大橋海上風電場基礎設計與分析」,四川建築科學研究,36(5):188-191,同濟大學土木工程學院。
61.張其一(2009),「複合載入模式下地基失效機制研究」,岩石力學學報,30(10):2940-2944。
62.閆澍旺、霍知亮、孫立強、劉潤(2013),「海上風電機組筒型基礎工作及承載特性研究」,岩土力學,34(7):2036-2042。
63.陳華兵、趙彥賢(2012),「S77 R70MT試驗風機基礎設計及施工」,水利水電工程設計DWRHE,31(1)。
64.廖南華(2003),「土壤經驗參數於數值分析之應用」,國立成功大學土木工程研究所,碩士論文。65.榮冰、張嘎、王富強(2010),「響水海上風機群樁基礎變形特性的有限元分析」,岩土力學,31(2):470-474。
66.劉冰雪、唐小微(2009),「海上風機單樁基礎承載特性三維有限元分析」,大連理工大學,碩士學位論文。
67.劉潤、王磊、丁紅岩、練繼建、李寶仁(2014),「複合加載模式下不排水飽和軟黏土中寬淺式筒型基礎地基承載力包絡線研究」,岩土工程學報,36(1):146-154。
68.劉潤、陳廣思、劉禹臣、徐余(2013),「海上風電大直徑寬淺式筒型基礎抗彎特性分析」,天津大學學報(自然科學與工程技術版),46(5):393-400。
69.賴瑞應、張權、薛強、顧承宇、曾韋緐、徐偉誌、翁健煌、蔡勇賢(2012),「港灣構造物耐震性能設計架構之研究(2/4)」,交通部運輸研究所,臺北。
70.簡連貴、蕭松山、楊文昌、黃偉柏、江允智(2014),「離岸式風力發電海事工程規劃設計與施工規範之研究」,科技部研究計畫,基隆。
71.簡連貴、顧承宇、林德貴(2014),「離岸風機支撐結構基礎工程設計技術開發委託研究案」,行政院原子能委員會委託研究計畫,國立臺灣海洋大學。
72.鐘超、毛東風、段夢蘭、李志剛、袁志林、王建國(2013),「考慮樁基弱化的導管架平台橫向振動特性試驗研究」,岩土力學,34(1):53-60。