|
歐惠郡,張祖辛,2010。溶劑。科技部高瞻自然科學教育資源平台。(http://highscope.ch.ntu.edu.tw/wordpress/?p=4613) Alvarez, F. J. (2014). The effect of chitin size, shape, source and purification method on immune recognition. Molecules, 19(4), 4433-4451. Babu, C. M., Chakrabarti, R., & Surya Sambasivarao, K. R. (2008). Enzymatic isolation of carotenoid-protein complex from shrimp head waste and its use as a source of carotenoids. LWT - Food Science and Technology, 41(2), 227-235. Bao, L., Zhang, Z. L., Tian, Z. Q., Zhang, L., Liu, C., Lin, Y., Qi, B., & Pang, D. W. (2011). Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Advanced Materials, 23(48), 5801-5806. Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32(5), 759-769. Chowdhury, D., Gogoi, N., & Majumdar, G. (2012). Fluorescent carbon dots obtained from chitosan gel. RSC Advances, 2(32), 12156. De, B., & Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 3(22), 8286. Deng, Y., Zhao, D., Chen, X., Wang, F., Song, H., & Shen, D. (2013). Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chemical Communications, 49(51), 5751-5753. Ding, H., Yu, S. B., Wei, J. S., & Xiong, H. M. (2016). Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 10(1), 484-491. Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., & Chen, G. (2012). Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Analytical Chemistry, 84(14), 6220-6224. Fu, C., Qiang, L., Liu, T., Tan, L., Shi, H., Chen, X., Ren, X., & Meng, X. (2014). Ultrafast chemical aerosol flow synthesis of biocompatible fluorescent carbon dots for bioimaging. Journal of Materials Chemistry B, 2(40), 6978-6983. Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S., Alivisatos, A. P. (2001). Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. Journal of Physical Chemistry B, 102, 8861-8871. Gonçalves, H., Jorge, P. A. S., Fernandes, J. R. A., & Esteves da Silva, J. C. G. (2010). Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensors and Actuators B: Chemical, 145(2), 702-707. Goncalves, H., & Esteves da Silva, J. C. (2010). Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. Journal of Fluorescence, 20(5), 1023-1028. Gong, X., Paau, M. C., Hu, Q., Shuang, S., Dong, C., & Choi, M. M. (2016). UHPLC combined with mass spectrometric study of as-synthesized carbon dots samples. Talanta, 146, 340-350. Guan, W., Gu, W., Ye, L., Guo, C., Su, S., Xu, P., & Xue, M. (2014). Microwave-assisted polyol synthesis of carbon nitride dots from folic acid for cell imaging. International Journal of Nanomedicine, 9, 5071-5078. Hardwick, B., Jackson, W., Wilson, G., and Mau, A. W. H. (2001). Advanced materials for banknote applications. Advanced Material, 13, 980-984. Hayes, M., Carney, B., Slater, J., & Bruck, W. (2008). Mining marine shellfish wastes for bioactive molecules: chitin and chitosan--Part A: extraction methods. Biotechnology Journal, 3(7), 871-877. Hsu, P.-C., Shih, Z.-Y., Lee, C.-H., & Chang, H.-T. (2012). Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chemistry, 14(4), 917. Hu, X., Du, Y., Tang, Y., Wang, Q., Feng, T., Yang, J., & Kennedy, J. F. (2007). Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, 70(4), 451-458. Huang, X., Zhang, F., Zhu L., Choi, K. Y., Guo, N., Guo, J., Tackett, K., Anilkumar, P., Liu, G., Quan, Q., Choi, H. S., Niu, G., Sun, Y. P., Lee, S., & Chen X. (2013). The effect of injection route on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano, 7(7), 5684-5693. Ifuku, S., Ikuta, A., Izawa, H., Morimoto, M., & Saimoto, H. (2014). Control of mechanical properties of chitin nanofiber film using glycerol without losing its characteristics. Carbohydrate Polymers, 101, 714-717. Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: preparations, modifications, and applications. Nanoscale, 4(11), 3308-3318. Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., & Seifalian, A. M. (2007). Biological applications of quantum dots. Biomaterials, 28(31), 4717-4732. Jia, X., Li, J., & Wang, E. (2012). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4(18), 5572-5575. Jiang, C., Wu, H., Song, X., Ma, X., Wang, J., & Tan, M. (2014). Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Talanta, 127, 68-74. Kim, D. S. (2003). The removal by crab shell of mixed heavy metal ions in aqueous solution. Bioresource Technology, 87, 355–357. Konwar, A., Gogoi, N., Majumdar, G., & Chowdhury, D. (2015). Green chitosan-carbon dots nanocomposite hydrogel film with superior properties. Carbohydrate Polymers, 115, 238-245. Kosseva, M. R. (2013). Chapter 3 - Sources, characterization, and composition of food industry wastes. In M. R. K. Webb (Ed.), Food Industry Wastes, (pp. 37-60). San Diego: Academic Press. Li, W., Zhang, Z., Kong, B., Feng, S., Wang, J., Wang, L., Yang, J., Zhang, F., Wu, P., & Zhao, D. (2013). Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angewandte Chemie International Edition, 52(31), 8151-8155. Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26(18), 3919-3928. Liu, C., Zhang, P., Tian, F., Li, W., Li, F., & Liu, W. (2011). One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. Journal of Materials Chemistry, 21(35), 13163. Liu, H., Ye, T., & Mao, C. (2007). Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition, 46(34), 6473-6475. Martínez Maestro, L., Jacinto, C., Rocha, U., Carmen Iglesias-de la Cruz, M., Sanz-Rodriguez, F., Juarranz, A., García Solé, J., & Jaque, D. (2012). Optimum quantum dot size for highly efficient fluorescence bioimaging. Journal of Applied Physics, 111(2), 023513. Nam, Y. S., Park, W. H., Ihm, D., & Hudson, S. M. (2010). Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydrate Polymers, 80(1), 291-295. Nandi, S., Malishev, R., Parambath Kootery, K., Mirsky, Y., Kolusheva, S., & Jelinek, R. (2014). Membrane analysis with amphiphilic carbon dots. Chemical Communications, 50(71), 10299-10302. Pangon, A., Saesoo, S., Saengkrit, N., Ruktanonchai, U., & Intasanta, V. (2016). Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydrate Polymers, 144, 419-427. Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L. B., Zhan, X., Gao, G., Vithayathil, S. A., Kaipparettu, B. A., Marti, A. A., Hayashi, T., Zhu, J. J., & Ajayan, P. M. (2012). Graphene quantum dots derived from carbon fibers. Nano Letters, 12(2), 844-849. Ray, S. C., Saha, A., Jana, N. R., & Sarkar, R. (2009). Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. The Journal of Physical Chemistry C, 113(43), 18546-18551. Rizvi, S. B., Ghaderi, S., Keshtgar, M., & Seifalian, A. M. (2010). Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Reviews, 1. Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48(70), 8835-8837. Shao, L., Gao, Y., & Yan, F. (2011). Semiconductor quantum dots for biomedicial applications. Sensors, 11(12), 11736-11751. Silva, C., Yanez, E., Martin-Diaz, M. L., & DelValls, T. A. (2012). Assessing a bioremediation strategy in a shallow coastal system affected by a fish farm culture--application of GIS and shellfish dynamic models in the Rio San Pedro, SW Spain. Marine Pollution Bulletin, 64(4), 751-765. So, Y.-H., Chang, H.-T., Chiu, W.-J., & Huang, C.-C. (2014). Graphene oxide modified with aptamer-conjugated gold nanoparticles and heparin: a potent targeted anticoagulant. Biomaterials Science, 2(10), 1332. Suresh, P.V., & Chandrasekaran, M. (1998). Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World Journal of Microbiology & Biotechnology, 14, 655-660 Talib, A., Pandey, S., Thakur, M., & Wu, H. F. (2015). Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor. Materials Science and Engineering C, 48, 700-703. Thakur, M., Pandey, S., Mewada, A., Patil, V., Khade, M., Goshi, E., & Sharon, M. (2014). Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. Journal of Drug Delivery, 2014, 282193. Walling, M. A., Novak, J. A., & Shepard, J. R. (2009). Quantum dots for live cell and in vivo imaging. International Journal of Molecular Sciences, 10(2), 441-491. Wang, C., Sun, D., Zhuo, K., Zhang, H., & Wang, J. (2014). Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Advances, 4(96), 54060-54065. Wang, J., Wang, C. F., Chen, S. (2012). Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angewandte Chemie International Edition, 51(37), 9297-9301 Wang, S.-L., Yen, Y.-H., Tsiao, W.-J., Chang, W.-T., & Wang, C.-L. (2002). Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology, 31(3), 337-344. Wang, S. L., Hsu, W. T., Liang, T. W., Yen, Y. H., & Wang, C. L. (2008). Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresource Technology, 99(13), 5679-5686. Wang, S. L., Huang, T. Y., Wang, C. Y., Liang, T. W., Yen, Y. H., & Sakata, Y. (2008). Bioconversion of squid pen by Lactobacillus paracasei subsp paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers. Bioresource Technology, 99(13), 5436-5443. Wang, S. L., Wang, C. Y., & Huang, T. Y. (2008). Microbial reclamation of squid pen for the production of a novel extracellular serine protease by Lactobacillus paracasei subsp paracasei TKU012. Bioresource Technology, 99(9), 3411-3417. Wang, W., Lu, Y.-C., Huang, H., Wang, A.-J., Chen, J.-R., & Feng, J.-J. (2014). Solvent-free synthesis of sulfur- and nitrogen-co-doped fluorescent carbon nanoparticles from glutathione for highly selective and sensitive detection of mercury(II) ions. Sensors and Actuators B: Chemical, 202, 741-747. Wei, W., Xu, C., Wu, L., Wang, J., Ren, J., & Qu, X. (2014). Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Scientific Reports, 4, 3564. Weng, C. I., Chang, H. T., Lin, C. H., Shen, Y. W., Unnikrishnan, B., Li, Y. J., & Huang, C. C. (2015). One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosensors and Bioelectronics, 68, 1-6. Wu, Z. L., Zhang, P., Gao, M. X., Liu, C. F., Wang, W., Leng, F., & Huang, C. Z. (2013). One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk – natural proteins. Journal of Materials Chemistry B, 1(22), 2868. Xu, Q., Zhao, J., Liu, Y., Pu, P., Wang, X., Chen, Y., Gao, C., Chen, J., & Zhou, H. (2015). Enhancing the luminescence of carbon dots by doping nitrogen element and its application in the detection of Fe(III). Journal of Materials Science, 50(6), 2571-2576. Xu, Y., Gallert, C., & Winter, J. (2008). Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology, 79(4), 687-697. Xu, Y., Liu, J., Gao, C., & Wang, E. (2014). Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochemistry Communications, 48, 151-154. Yang, X., Zhuo, Y., Zhu, S., Luo, Y., Feng, Y., & Dou, Y. (2014). Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosensors and Bioelectronics, 60, 292-298. Yang, Y., Cui, J., Zheng, M., Hu, C., Tan, S., Xiao, Y., Yang, Q., & Liu, Y. (2012). One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communcations, 48(3), 380-382. Yeh, T. F., Huang, W. L., Chung, C. J., Chiang, I. T., Chen, L. C., Chang, H. Y., Su, W. C., Cheng, C., Chen, S. J., & Teng, H. (2016). Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. The Journal of Physical Chemistry Letters, 7(11), 2087-2092. Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133-1174. Yu, J., Song, N., Zhang, Y.-K., Zhong, S.-X., Wang, A.-J., & Chen, J. (2015). Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors and Actuators B: Chemical, 214, 29-35. Zhang, J., Yuan, Y., Liang, G., & Yu, S.-H. (2015). Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Advanced Science, 2(4), 1-6. Zhang, H., Shi, Y., Xu, J., & Sun, R. (2016). Deposition of Nd-doped Fe2O3 nanoparticles on cenosphere by hydrothermal method. Nano, 11(03), 1650026. Zhao, A., Chen, Z., Zhao, C., Gao, N., Ren, J., & Qu, X. (2015). Recent advances in bioapplications of C-dots. Carbon, 85, 309-327. Zhao, Z., Sun, Y., Luo, Q., Dong, F., Li, H., & Ho, W. K. (2015). Mass-controlled direct synthesis of graphene-like carbon nitride nanosheets with exceptional high visible light activity. Less is Better. Scientific Reports, 5, 14643. Zheng, H., Wang, Q., Long, Y., Zhang, H., Huang, X., & Zhu, R. (2011). Enhancing the luminescence of carbon dots with a reduction pathway. Chemical Communcations, 47(38), 10650-10652. Zhu, C., Zhai, J., & Dong, S. (2012). Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical Communcations, 48(75), 9367-9369. Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F., & Yang, X. (2009). Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communcations, (34), 5118-5120. Zhu, L., Yin, Y., Wang, C.-F., & Chen, S. (2013). Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. Journal of Materials Chemistry C, 1(32), 4925. Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., & Yang, B. (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research, 8(2), 355-381. Zhu, W., Song, H., Zhang, L., Weng, Y., Su, Y., & Lv, Y. (2015). Fabrication of fluorescent nitrogen-rich graphene quantum dots by tin(iv) catalytic carbonization of ethanolamine. RSC Advances, 5(74), 60085-60089. Zhuo, Y., Miao, H., Zhong, D., Zhu, S., & Yang, X. (2015). One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Materials Letters, 139, 197-200.
|