跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳書瀚
研究生(外文):Wu, Shu-Han
論文名稱:蝦蟹殼碳點的製備、基本特性及應用於細胞成像與訊息加密
論文名稱(外文):The production and characterization of carbon dots from shrimp and crab shells for cell imaging and coding
指導教授:蔡敏郎蔡敏郎引用關係
指導教授(外文):Tsai, Min-Lang
口試委員:陳榮輝糜福龍董崇民
口試委員(外文):Chen, Ronf-HueiMi, Fwu-LongDong, Trong-Ming
口試日期:2016-07-13
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:124
中文關鍵詞:碳點螢光細胞成像訊息加密蝦蟹殼利用
外文關鍵詞:Carbon dotsFluorescenceCell imagingCodingUtilization of shrimp and crab shells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
附錄目錄 IX
第一章、前言 1
第二章、文獻回顧 2
2.1. 碳點 2
2.1.1. 簡介 2
2.1.2. 表面官能基與粒徑對碳點放射螢光的影響 2
2.1.3. 表面鈍化 3
2.1.4. 碳點之毒性 4
2.1.5. 傳統半導體量子點與碳點 5
2.1.6. 碳點的粹滅 6
2.1.7. 碳點的電化學螢光反應 7
2.2. 碳點合成的方法 7
2.2.1. 水熱法 8
2.2.2. 乾熱法 9
2.2.3. 微波 10
2.2.4. 酸氧化 10
2.2.5. 熱注射 11
2.2.6. 油浴 11
2.2.7. 氧化結合加熱 11
2.2.8. 常壓加熱攪拌法 11
2.3. 分離不同螢光性質的碳點 11
2.4. 原料對碳點特性的影響 12
2.4.1. 原料與碳點表面上的官能基 13
2.4.2. 光學性質 14
2.5. 碳點的應用 15
2.5.1. 細胞成像 16
2.5.2. 訊息加密 18
2.5.3. 奈米感測器 18
2.5.4. 奈米複合薄膜 18
2.6. 水產品廢棄物 19
2.6.1. 簡介 19
2.6.2. 蝦殼和蟹殼 19
第三章、實驗材料 21
3.1. 碳點原料 21
3.1.1. 蝦殼 21
3.1.2. 蟹殼 21
3.2. 細胞株 21
3.3. 實驗藥品 21
第四章、實驗架構與方法 24
4.1. 原料的處理 25
4.1.1. 蝦殼粉之製備 25
4.1.2. 三點蟹殼粉之製備 25
4.2. 碳點之合成 25
4.3. 碳點的基本特性 25
4.3.1. 螢光圖譜 25
4.3.2. 測定碳點之粒徑與觀察其形狀 25
4.3.3. 碳點表面官能基測定 25
4.3.4. 瓊脂凝膠電泳 26
4.3.5. 界達電位 26
4.3.6. 於不同溶劑中螢光強度的比較 26
4.3.7. 產率 27
4.3.8. 量子產率 27
4.3.9. 元素分析 28
4.4. 環境因素對碳點螢光強度的影響 28
4.4.1. pH對螢光強度的改變 28
4.4.2. 離子強度對螢光強度的改變 28
4.4.3. 放置時間對螢光強度的改變 29
4.5. 細胞實驗 29
4.5.1. 細胞成像 29
4.5.2. 細胞毒性實驗 29
4.6. 螢光墨水 29
4.7. 不同金屬離子於不同pH值下粹滅蝦蟹殼碳點螢光之能力 30
第五章、結果與討論 31
5.1. 蝦蟹殼碳點製備條件之探討 31
5.1.1. 乾熱溫度對產物外觀及螢光強度之影響 31
5.1.2. 離心條件 31
5.2. 基本特性 32
5.2.1. 螢光性質 32
5.2.2. 粒徑分佈與形狀 33
5.2.3. 碳點表面官能基 33
5.2.4. 瓊脂凝膠電泳 34
5.2.5. 於不同pH值下的界達電位 35
5.2.6. 於不同溶劑的螢光強度 35
5.2.7. 產率 35
5.2.8. 量子產率 36
5.2.9. 元素分析 36
5.3. 環境因素對碳點螢光強度的影響 36
5.3.1. 於不同pH值下的螢光強度 36
5.3.2. 離子強度穩定性 37
5.3.3. 時間穩定性 37
5.4. 細胞成像 37
5.5. 螢光墨水與訊息加密 38
5.6. 金屬離子粹滅碳點能力 38
5.7. 與幾丁聚醣碳點之綜合比較 46
第六章、結論 48
第七章、參考文獻 49
第八章、表 54
第九章、圖 64
第十章、附錄 124


歐惠郡,張祖辛,2010。溶劑。科技部高瞻自然科學教育資源平台。(http://highscope.ch.ntu.edu.tw/wordpress/?p=4613)
Alvarez, F. J. (2014). The effect of chitin size, shape, source and purification method on immune recognition. Molecules, 19(4), 4433-4451.
Babu, C. M., Chakrabarti, R., & Surya Sambasivarao, K. R. (2008). Enzymatic isolation of carotenoid-protein complex from shrimp head waste and its use as a source of carotenoids. LWT - Food Science and Technology, 41(2), 227-235.
Bao, L., Zhang, Z. L., Tian, Z. Q., Zhang, L., Liu, C., Lin, Y., Qi, B., & Pang, D. W. (2011). Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Advanced Materials, 23(48), 5801-5806.
Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32(5), 759-769.
Chowdhury, D., Gogoi, N., & Majumdar, G. (2012). Fluorescent carbon dots obtained from chitosan gel. RSC Advances, 2(32), 12156.
De, B., & Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 3(22), 8286.
Deng, Y., Zhao, D., Chen, X., Wang, F., Song, H., & Shen, D. (2013). Long lifetime pure organic phosphorescence based on water soluble carbon dots. Chemical Communications, 49(51), 5751-5753.
Ding, H., Yu, S. B., Wei, J. S., & Xiong, H. M. (2016). Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 10(1), 484-491.
Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., & Chen, G. (2012). Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Analytical Chemistry, 84(14), 6220-6224.
Fu, C., Qiang, L., Liu, T., Tan, L., Shi, H., Chen, X., Ren, X., & Meng, X. (2014). Ultrafast chemical aerosol flow synthesis of biocompatible fluorescent carbon dots for bioimaging. Journal of Materials Chemistry B, 2(40), 6978-6983.
Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S., Alivisatos, A. P. (2001). Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. Journal of Physical Chemistry B, 102, 8861-8871.
Gonçalves, H., Jorge, P. A. S., Fernandes, J. R. A., & Esteves da Silva, J. C. G. (2010). Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensors and Actuators B: Chemical, 145(2), 702-707.
Goncalves, H., & Esteves da Silva, J. C. (2010). Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. Journal of Fluorescence, 20(5), 1023-1028.
Gong, X., Paau, M. C., Hu, Q., Shuang, S., Dong, C., & Choi, M. M. (2016). UHPLC combined with mass spectrometric study of as-synthesized carbon dots samples. Talanta, 146, 340-350.
Guan, W., Gu, W., Ye, L., Guo, C., Su, S., Xu, P., & Xue, M. (2014). Microwave-assisted polyol synthesis of carbon nitride dots from folic acid for cell imaging. International Journal of Nanomedicine, 9, 5071-5078.
Hardwick, B., Jackson, W., Wilson, G., and Mau, A. W. H. (2001). Advanced materials for banknote applications. Advanced Material, 13, 980-984.
Hayes, M., Carney, B., Slater, J., & Bruck, W. (2008). Mining marine shellfish wastes for bioactive molecules: chitin and chitosan--Part A: extraction methods. Biotechnology Journal, 3(7), 871-877.
Hsu, P.-C., Shih, Z.-Y., Lee, C.-H., & Chang, H.-T. (2012). Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chemistry, 14(4), 917.
Hu, X., Du, Y., Tang, Y., Wang, Q., Feng, T., Yang, J., & Kennedy, J. F. (2007). Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, 70(4), 451-458.
Huang, X., Zhang, F., Zhu L., Choi, K. Y., Guo, N., Guo, J., Tackett, K., Anilkumar, P., Liu, G., Quan, Q., Choi, H. S., Niu, G., Sun, Y. P., Lee, S., & Chen X. (2013). The effect of injection route on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano, 7(7), 5684-5693.
Ifuku, S., Ikuta, A., Izawa, H., Morimoto, M., & Saimoto, H. (2014). Control of mechanical properties of chitin nanofiber film using glycerol without losing its characteristics. Carbohydrate Polymers, 101, 714-717.
Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: preparations, modifications, and applications. Nanoscale, 4(11), 3308-3318.
Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., & Seifalian, A. M. (2007). Biological applications of quantum dots. Biomaterials, 28(31), 4717-4732.
Jia, X., Li, J., & Wang, E. (2012). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4(18), 5572-5575.
Jiang, C., Wu, H., Song, X., Ma, X., Wang, J., & Tan, M. (2014). Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging. Talanta, 127, 68-74.
Kim, D. S. (2003). The removal by crab shell of mixed heavy metal ions in aqueous solution. Bioresource Technology, 87, 355–357.
Konwar, A., Gogoi, N., Majumdar, G., & Chowdhury, D. (2015). Green chitosan-carbon dots nanocomposite hydrogel film with superior properties. Carbohydrate Polymers, 115, 238-245.
Kosseva, M. R. (2013). Chapter 3 - Sources, characterization, and composition of food industry wastes. In M. R. K. Webb (Ed.), Food Industry Wastes, (pp. 37-60). San Diego: Academic Press.
Li, W., Zhang, Z., Kong, B., Feng, S., Wang, J., Wang, L., Yang, J., Zhang, F., Wu, P., & Zhao, D. (2013). Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angewandte Chemie International Edition, 52(31), 8151-8155.
Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26(18), 3919-3928.
Liu, C., Zhang, P., Tian, F., Li, W., Li, F., & Liu, W. (2011). One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. Journal of Materials Chemistry, 21(35), 13163.
Liu, H., Ye, T., & Mao, C. (2007). Fluorescent carbon nanoparticles derived from candle soot. Angewandte Chemie International Edition, 46(34), 6473-6475.
Martínez Maestro, L., Jacinto, C., Rocha, U., Carmen Iglesias-de la Cruz, M., Sanz-Rodriguez, F., Juarranz, A., García Solé, J., & Jaque, D. (2012). Optimum quantum dot size for highly efficient fluorescence bioimaging. Journal of Applied Physics, 111(2), 023513.
Nam, Y. S., Park, W. H., Ihm, D., & Hudson, S. M. (2010). Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydrate Polymers, 80(1), 291-295.
Nandi, S., Malishev, R., Parambath Kootery, K., Mirsky, Y., Kolusheva, S., & Jelinek, R. (2014). Membrane analysis with amphiphilic carbon dots. Chemical Communications, 50(71), 10299-10302.
Pangon, A., Saesoo, S., Saengkrit, N., Ruktanonchai, U., & Intasanta, V. (2016). Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydrate Polymers, 144, 419-427.
Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R., Ge, L., Song, L., Alemany, L. B., Zhan, X., Gao, G., Vithayathil, S. A., Kaipparettu, B. A., Marti, A. A., Hayashi, T., Zhu, J. J., & Ajayan, P. M. (2012). Graphene quantum dots derived from carbon fibers. Nano Letters, 12(2), 844-849.
Ray, S. C., Saha, A., Jana, N. R., & Sarkar, R. (2009). Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. The Journal of Physical Chemistry C, 113(43), 18546-18551.
Rizvi, S. B., Ghaderi, S., Keshtgar, M., & Seifalian, A. M. (2010). Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Reviews, 1.
Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48(70), 8835-8837.
Shao, L., Gao, Y., & Yan, F. (2011). Semiconductor quantum dots for biomedicial applications. Sensors, 11(12), 11736-11751.
Silva, C., Yanez, E., Martin-Diaz, M. L., & DelValls, T. A. (2012). Assessing a bioremediation strategy in a shallow coastal system affected by a fish farm culture--application of GIS and shellfish dynamic models in the Rio San Pedro, SW Spain. Marine Pollution Bulletin, 64(4), 751-765.
So, Y.-H., Chang, H.-T., Chiu, W.-J., & Huang, C.-C. (2014). Graphene oxide modified with aptamer-conjugated gold nanoparticles and heparin: a potent targeted anticoagulant. Biomaterials Science, 2(10), 1332.
Suresh, P.V., & Chandrasekaran, M. (1998). Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World Journal of Microbiology & Biotechnology, 14, 655-660
Talib, A., Pandey, S., Thakur, M., & Wu, H. F. (2015). Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor. Materials Science and Engineering C, 48, 700-703.
Thakur, M., Pandey, S., Mewada, A., Patil, V., Khade, M., Goshi, E., & Sharon, M. (2014). Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. Journal of Drug Delivery, 2014, 282193.
Walling, M. A., Novak, J. A., & Shepard, J. R. (2009). Quantum dots for live cell and in vivo imaging. International Journal of Molecular Sciences, 10(2), 441-491.
Wang, C., Sun, D., Zhuo, K., Zhang, H., & Wang, J. (2014). Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Advances, 4(96), 54060-54065.
Wang, J., Wang, C. F., Chen, S. (2012). Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angewandte Chemie International Edition, 51(37), 9297-9301
Wang, S.-L., Yen, Y.-H., Tsiao, W.-J., Chang, W.-T., & Wang, C.-L. (2002). Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology, 31(3), 337-344.
Wang, S. L., Hsu, W. T., Liang, T. W., Yen, Y. H., & Wang, C. L. (2008). Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresource Technology, 99(13), 5679-5686.
Wang, S. L., Huang, T. Y., Wang, C. Y., Liang, T. W., Yen, Y. H., & Sakata, Y. (2008). Bioconversion of squid pen by Lactobacillus paracasei subsp paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers. Bioresource Technology, 99(13), 5436-5443.
Wang, S. L., Wang, C. Y., & Huang, T. Y. (2008). Microbial reclamation of squid pen for the production of a novel extracellular serine protease by Lactobacillus paracasei subsp paracasei TKU012. Bioresource Technology, 99(9), 3411-3417.
Wang, W., Lu, Y.-C., Huang, H., Wang, A.-J., Chen, J.-R., & Feng, J.-J. (2014). Solvent-free synthesis of sulfur- and nitrogen-co-doped fluorescent carbon nanoparticles from glutathione for highly selective and sensitive detection of mercury(II) ions. Sensors and Actuators B: Chemical, 202, 741-747.
Wei, W., Xu, C., Wu, L., Wang, J., Ren, J., & Qu, X. (2014). Non-enzymatic-browning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Scientific Reports, 4, 3564.
Weng, C. I., Chang, H. T., Lin, C. H., Shen, Y. W., Unnikrishnan, B., Li, Y. J., & Huang, C. C. (2015). One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosensors and Bioelectronics, 68, 1-6.
Wu, Z. L., Zhang, P., Gao, M. X., Liu, C. F., Wang, W., Leng, F., & Huang, C. Z. (2013). One-pot hydrothermal synthesis of highly luminescent nitrogen-doped amphoteric carbon dots for bioimaging from Bombyx mori silk – natural proteins. Journal of Materials Chemistry B, 1(22), 2868.
Xu, Q., Zhao, J., Liu, Y., Pu, P., Wang, X., Chen, Y., Gao, C., Chen, J., & Zhou, H. (2015). Enhancing the luminescence of carbon dots by doping nitrogen element and its application in the detection of Fe(III). Journal of Materials Science, 50(6), 2571-2576.
Xu, Y., Gallert, C., & Winter, J. (2008). Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology, 79(4), 687-697.
Xu, Y., Liu, J., Gao, C., & Wang, E. (2014). Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochemistry Communications, 48, 151-154.
Yang, X., Zhuo, Y., Zhu, S., Luo, Y., Feng, Y., & Dou, Y. (2014). Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosensors and Bioelectronics, 60, 292-298.
Yang, Y., Cui, J., Zheng, M., Hu, C., Tan, S., Xiao, Y., Yang, Q., & Liu, Y. (2012). One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communcations, 48(3), 380-382.
Yeh, T. F., Huang, W. L., Chung, C. J., Chiang, I. T., Chen, L. C., Chang, H. Y., Su, W. C., Cheng, C., Chen, S. J., & Teng, H. (2016). Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. The Journal of Physical Chemistry Letters, 7(11), 2087-2092.
Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133-1174.
Yu, J., Song, N., Zhang, Y.-K., Zhong, S.-X., Wang, A.-J., & Chen, J. (2015). Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors and Actuators B: Chemical, 214, 29-35.
Zhang, J., Yuan, Y., Liang, G., & Yu, S.-H. (2015). Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Advanced Science, 2(4), 1-6.
Zhang, H., Shi, Y., Xu, J., & Sun, R. (2016). Deposition of Nd-doped Fe2O3 nanoparticles on cenosphere by hydrothermal method. Nano, 11(03), 1650026.
Zhao, A., Chen, Z., Zhao, C., Gao, N., Ren, J., & Qu, X. (2015). Recent advances in bioapplications of C-dots. Carbon, 85, 309-327.
Zhao, Z., Sun, Y., Luo, Q., Dong, F., Li, H., & Ho, W. K. (2015). Mass-controlled direct synthesis of graphene-like carbon nitride nanosheets with exceptional high visible light activity. Less is Better. Scientific Reports, 5, 14643.
Zheng, H., Wang, Q., Long, Y., Zhang, H., Huang, X., & Zhu, R. (2011). Enhancing the luminescence of carbon dots with a reduction pathway. Chemical Communcations, 47(38), 10650-10652.
Zhu, C., Zhai, J., & Dong, S. (2012). Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical Communcations, 48(75), 9367-9369.
Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F., & Yang, X. (2009). Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communcations, (34), 5118-5120.
Zhu, L., Yin, Y., Wang, C.-F., & Chen, S. (2013). Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. Journal of Materials Chemistry C, 1(32), 4925.
Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., & Yang, B. (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research, 8(2), 355-381.
Zhu, W., Song, H., Zhang, L., Weng, Y., Su, Y., & Lv, Y. (2015). Fabrication of fluorescent nitrogen-rich graphene quantum dots by tin(iv) catalytic carbonization of ethanolamine. RSC Advances, 5(74), 60085-60089.
Zhuo, Y., Miao, H., Zhong, D., Zhu, S., & Yang, X. (2015). One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Materials Letters, 139, 197-200.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top