[1] S. S. Hou, R. R. Zhang, S. K. Guan, C. X. Ren, J. H. Gao, Q. B. Lu, et al., "In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg–Zn–Y–Nd alloy," Applied Surface Science, vol. 258, pp. 3571-3577, 2012.
[2] J. Yang, F. Cui, and I. S. Lee, "Surface modifications of magnesium alloys for biomedical applications," Ann Biomed Eng, vol. 39, pp. 1857-71, Jul 2011.
[3] T. L. Nguyen, A. Blanquet, M. P. Staiger, G. J. Dias, and T. B. Woodfield, "On the role of surface roughness in the corrosion of pure magnesium in vitro," J Biomed Mater Res B Appl Biomater, vol. 100, pp. 1310-8, Jul 2012.
[4] J. Brinkmann, T. Hefti, F. Schlottig, N. D. Spencer, and H. Hall, "Response of osteoclasts to titanium surfaces with increasing surface roughness: an in vitro study," Biointerphases, vol. 7, p. 34, Dec 2012.
[5] X. B. Chen, N. Birbilis, and T. B. Abbott, "A simple route towards a hydroxyapatite–Mg(OH)2 conversion coating for magnesium," Corrosion Science, vol. 53, pp. 2263-2268, 2011.
[6] " 闕山璋,“骨科植入物生醫材料及器材”,科儀新知, 第十三卷, 第一期, 1991.," pp. 736-747.[7] C. Castellani, R. A. Lindtner, P. Hausbrandt, E. Tschegg, S. E. Stanzl-Tschegg, G. Zanoni, et al., "Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control," Acta Biomater, vol. 7, pp. 432-40, Jan 2011.
[8] X. B. Chen, H. Y. Yang, T. B. Abbott, M. A. Easton, and N. Birbilis, "Magnesium: Engineering the Surface," Jom, vol. 64, pp. 650-656, 2012.
[9] "Balance of Magnesium Positively Correlates with That of Calcium," Journal of the American College of Nutrition, Vol. 23, No. 6, 768S–770S (2004).
[10] L. Mao, G. Yuan, J. Niu, Y. Zong, and W. Ding, "In vitro degradation behavior and biocompatibility of Mg–Nd–Zn–Zr alloy by hydrofluoric acid treatment," Materials Science and Engineering: C, vol. 33, pp. 242-250, 2013.
[11] S. G. Du, Y. L. Lu, Y. K. Chen, Y. Guo, and Q. Hong, "Formation and Performance of Cerium Silane Mixture Conversion Coatings on AZ91 Magnesium Alloy," Advanced Materials Research, vol. 197-198, pp. 387-395, 2011.
[12] Z. Grubač, I. Škugor Rončević, M. Metikoš-Huković, R. Babić, M. Petravić, and R. Peter, "Surface Modification of Biodegradable Magnesium Alloys," Journal of The Electrochemical Society, vol. 159, p. C253, 2012.
[13] M. Shahnewaz Bhuiyan and Y. Mutoh, "Corrosion fatigue behavior of conversion coated and painted AZ61 magnesium alloy," International Journal of Fatigue, vol. 33, pp. 1548-1556, 2011.
[14] D. Dziuba, A. Meyer-Lindenberg, J. M. Seitz, H. Waizy, N. Angrisani, and J. Reifenrath, "Long-term in vivo degradation behaviour and biocompatibility of the magnesium alloy ZEK100 for use as a biodegradable bone implant," Acta Biomater, Aug 23 2012.
[15] H. Hornberger, S. Virtanen, and A. R. Boccaccini, "Biomedical coatings on magnesium alloys - a review," Acta Biomater, vol. 8, pp. 2442-55, Jul 2012.
[16] M. T. Yeh, "Effect of heat treatment on mechanical properties and corrosion behavior of AZ80+2wt%Li Magnesium alloy," NTU, 2010.
[17] J. P. Long, S. J. Hollister, and S. A. Goldstein, "A paradigm for the development and evaluation of novel implant topologies for bone fixation: in vivo evaluation," J Biomech, vol. 45, pp. 2651-7, Oct 11 2012.
[18] X. P. Zhang, Z. P. Zhao, F. M. Wu, Y. L. Wang, and J. Wu, "Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution," Journal of Materials Science, vol. 42, pp. 8523-8528, 2007.
[19] S. Hiromoto and M. Tomozawa, "Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution," Surface and Coatings Technology, vol. 205, pp. 4711-4719, 2011.
[20] M. Jamesh, S. Kumar, and T. S. N. Sankara Narayanan, "Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications," Journal of Coatings Technology and Research, vol. 9, pp. 495-502, 2011.
[21] H. M. Wong, K. W. Yeung, K. O. Lam, V. Tam, P. K. Chu, K. D. Luk, et al., "A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants," Biomaterials, vol. 31, pp. 2084-96, Mar 2010.
[22] J.-Y. Uan, J.-K. Lin, Y.-S. Sun, W.-E. Yang, L.-K. Chen, and H.-H. Huang, "Surface coatings for improving the corrosion resistance and cell adhesion of AZ91D magnesium alloy through environmentally clean methods," Thin Solid Films, vol. 518, pp. 7563-7567, 2010.
[23] Y. Z. Wan, G. Y. Xiong, H. L. Luo, F. He, Y. Huang, and Y. L. Wang, "Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys," Applied Surface Science, vol. 254, pp. 5514-5516, 2008.
[24] J. Wang, J. Tang, P. Zhang, Y. Li, J. Wang, Y. Lai, et al., "Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review," J Biomed Mater Res B Appl Biomater, vol. 100, pp. 1691-701, Aug 2012.
[25] Z. Wen, C. Wu, C. Dai, and F. Yang, "Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid," Journal of Alloys and Compounds, vol. 488, pp. 392-399, 2009.
[26] Y. Zhu, G. Wu, Y.-H. Zhang, and Q. Zhao, "Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31," Applied Surface Science, vol. 257, pp. 6129-6137, 2011.
[27] T.-T. Wan, Z.-X. Liu, M.-Z. Bu, and P.-C. Wang, "Effect of surface pretreatment on corrosion resistance and bond strength of magnesium AZ31 alloy," Corrosion Science, vol. 66, pp. 33-42, 2013.
[28] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, "Magnesium and its alloys as orthopedic biomaterials: a review," Biomaterials, vol. 27, pp. 1728-34, Mar 2006.
[29] Despina D. Deligianni, Nikoleta D. Katsala, Petros G. Koutsoukos, and Y. F. Missirlis, "Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, di!erentiation and detachment strength," Biomaterials 22 (2001) 87-96.
[30] C. Xu, F. Yang, S. Wang, and S. Ramakrishna, "In vitro study of human vascular endothelial cell function on materials with various surface roughness," J Biomed Mater Res A, vol. 71, pp. 154-61, Oct 1 2004.
[31] Z. S. J. Y. Martin, J. Simpson,J. Lankford, "Effect of titanium surface roughness on moliferation,differentiation, and rotein synthesis of Ahurnan osteoblast-like cells P MG63)," Journal of Biomedical Materials Research, Vol. 29, 389-401 (1995).
[32] W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, and K. S. TenHuisen, "Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution," Journal of Solid State Chemistry, vol. 177, pp. 793-799, 2004.
[33] W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, and K. S. TenHuisen, "Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method," Biomaterials, vol. 25, pp. 4647-57, Aug 2004.
[34] F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stormer, C. Blawert, et al., "Biodegradable magnesium-hydroxyapatite metal matrix composites," Biomaterials, vol. 28, pp. 2163-74, Apr 2007.
[35] B. L. J.E. Gray, "Protective coatings on magnesium and its alloys — a critical review," Journal of Alloys and Compounds 336 (2002) 88–113.
[36] K. Z. Chong and T. S. Shih, "Conversion-coating treatment for magnesium alloys by a permanganate–phosphate solution," Materials Chemistry and Physics, vol. 80, pp. 191-200, 2003.
[37] A. R. Shashikala1, R. U. , S. M. M. , and and A. K.Sharma1, "Chemical Conversion Coatings on Magnesium Alloys - A Comparative Study," Int. J. Electrochem. Sci., 3 (2008) 993 - 1004
[38] D. C.-J. H. Ming-Feng Wu "The Study of the Fabrication Parameters of Micro-arc Oxidation on Hydroxyapatite Coating on Pure Titanium Plate," NTTU, 2009.
[39] P. M.-R. Y. Po-Jung Hsu, "The influence of duty ratio and frequency of pulsed bipolar microarc oxidation on the properties of the oxide ceramic coatings of 7075-T6 Al alloy," NTTU, 2009.
[40] H. H. Huang, C. T. Ho, T. H. Lee, T. L. Lee, K. K. Liao, and F. L. Chen, "Effect of surface roughness of ground titanium on initial cell adhesion," Biomol Eng, vol. 21, pp. 93-7, Nov 2004.
[41] X. N. Gu, W. Zheng, Y. Cheng, and Y. F. Zheng, "A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate," Acta Biomater, vol. 5, pp. 2790-9, Sep 2009.
[42] Y. Hsieh, Y. Du, F. Jin, Z. Zhou, and H. Enomoto, "Alkaline pre-treatment of rice hulls for hydrothermal production of acetic acid," Chemical Engineering Research and Design, vol. 87, pp. 13-18, 2009.
[43] K. Li, B. Wang, B. Yan, and W. Lu, "Preparing Ca-P coating on biodegradable magnesium alloy by hydrothermal method: In vitro degradation behavior," Chinese Science Bulletin, vol. 57, pp. 2319-2322, 2012.
[44] M. B. Kannan, "Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance," J Biomed Mater Res A, vol. 101, pp. 1248-54, May 2013.
[45] B. Kasemo, "Biological surface science," Surface Science, 2001.
[46] M. Moravej and D. Mantovani, "Biodegradable metals for cardiovascular stent application: interests and new opportunities," Int J Mol Sci, vol. 12, pp. 4250-70, 2011.
[47] C. J. 陈. 君. ZENG Rong-chang(曾荣昌)1, W. Dietzel2, N. Hort2, K.U. Kainer2, "Electrochemical behavior of magnesium alloys in simulated body fluids," 1, Trans. Nonferrous Met. Soc. China17(2007).
[48] X.-N. Gu and Y.-F. Zheng, "A review on magnesium alloys as biodegradable materials," Frontiers of Materials Science in China, vol. 4, pp. 111-115, 2010.
[49] J. Z. a. C. Wu, "Corrosion and Protection of Magnesium Alloys - A Review of the Patent Literature," Recent Patents on Corrosion Science, 2010, 2, 55-68.
[50] T. Kokubo and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?," Biomaterials, vol. 27, pp. 2907-2915, May 2006.