跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宗翰
研究生(外文):Tsung-Han, Li
論文名稱:噴印技術應用於軟性基材表面金屬化之研究
論文名稱(外文):The Printing Technology used in Soft Substrate Surface Metallization
指導教授:葛明德葛明德引用關係劉益銘
指導教授(外文):Ming-Der, GerYih-Ming, Liu
口試委員:葛明德劉益銘張章平楊勝俊曾俊傑
口試委員(外文):Ming-Der, GerYih-Ming, LiuChang-Chang, PingShung-Jim, YangChun-Chieh Tseng
口試日期:2013-06-26
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:88
中文關鍵詞:聚對苯二甲酸乙二酯聚醯亞胺表面改質無電電鍍噴印技術
外文關鍵詞:PETPIsurface modifiedeletroless depositedInk Jet Printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:606
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為利用噴印金屬化技術,於軟性PET、PI上製備金屬線路圖形。光學等級之PET基材具有透光特性,且成本低廉,是良好之光學應用材料; PI則是具有高平整性以及優良的耐化學性質、耐高溫特性與低膨脹係數,是良好的電子元件基材。研究使用自製奈米鈀金屬觸媒墨水,可透過噴印技術輸出墨水,形成觸媒圖形後,利用觸媒催化活性,透過無電電鍍的方式析鍍沉積鎳金屬,形成金屬圖形。此即為噴印金屬化技術,全程皆以低溫濕式之方式製備金屬圖形,製程成本低廉,優於傳統金屬化方法。
研究過程中探討以矽烷偶合劑作為附著度促進劑,改質PET、PI等軟性基材表面,提升噴印金屬化鍍層之附著性。針對基材之表面改質過程,有別於傳統乾式電漿預處理,本文嘗試以環保型酸洗溶液,作為基材之預處理,以增進矽烷偶合劑與基材間之自組裝反應。實驗中探討不同矽烷耦合劑的濃度、反應時間對基材表面改質程度之影響,並找出最佳表面改質之條件,以提升噴印金屬鍍層之附著度。實驗結果以接觸角測量以及FTIR等檢測基材表面改質程度,歸納最佳的實驗參數。
噴印金屬化製程,在PET以及PI等軟性基材表面,製備金屬鍍層之厚度與附著度,鍍層厚度依不同改質方式PET分別可達到6.1 μm及12.8 μm,且附著能力達到百格膠帶測試規範(ASTM d3359)中的5B等級,電阻率約為6.67 ×10-7 Ωm。PI方面,鍍層厚度依不同改質方式皆可達到3.9 μm,附著能力達到百格膠帶測試規範中的5B等級。研究成果在軟性電子元件之應用上,極具潛力。
Preparation of metal lines or patterns on flexible PET and PI substrates were studied in this thesis. The optical grade PET substrate having light-transmissible property and low cost is a good material for optical applications. PI is a polymer with high smoothness, excellent chemical resistance, high temperature resistance and low coefficient of expansion, which is good for application of the substrates of electronic devices. In this thesis, our typical catalytic ink containing palladium (Pd) nano-particles was used to print lines or patterns on the PET and PI substrates with ink-jet printing. These substrates were then electroless plated with nickel (Ni) to form metallic lines or patterns. Since the whole process was completed at lower temperature and was low cost, it is superior to the traditional method of metallization on nonconductive substrates.
Using silane as the coupling agent to modify PET and PI substrates and increase their adhesion with plated Ni layer was studied. In contrast to the traditional dry plasma pretreatment, this study attempts to use environment-friendly pickling solution to do the pre-processing of the substrate to improve the self-assembly reaction between silane coupling agent and substrate. The influence of process parameters such as the concentration of silane coupling agent and the reaction time on the degree of surface modification of the substrate was evaluated to find the optimal process parameters for the best adhesion between metallic pattern and substrate. The silane-modified surface of substrates were analyzed with contact angle measurements and FTIR spectroscopy to evaluated their modification effect.
The results show that our typical ink-jet printing and electroless plating process can successfully deposit 6.1 μm and 12.8 μm Ni layer on PET substrates respectively according to different ways of PET modification. The adhesion between Ni layer and substrate passed the 5B degree of ASTM-d3359 test. The resistivity of the deposited Ni film was about 6.67 × 10-7 Ωm. As for the PI substrates, the deposited Ni layer can achieve 3.9 μm for different modification methods. The adhesion between Ni layer and substrate also passed the 5B degree of ASTM-d3359 test. These results indicate that the metallic patterns fabricated with our typical ink-jet printing and electroless plating method has potential for the application of flexible electronic devices.
致謝 i
摘要 ii
Abstract iii
目錄 v
1. 前言 1
1.1 軟性印刷電路板 1
1.2 噴墨技術在印刷電路板中之應用 5
1.3 研究動機 6
1.4 研究目的 8
2. 文獻回顧 10
2.1 噴印技術發展 10
2.2 金屬化觸媒墨水 16
2.3 無電鍍技術 18
2.4 自組裝法改質技術(Self-assembly) 20
2.5 濕式化學蝕刻(Wet Chemical Etching) 23
3. 實驗 25
3.1 實驗藥品與設備 25
3.1.1 實驗藥品 25
3.1.2 實驗設備 26
3.1.3 檢測方法 26
3.2 實驗流程 31
3.2.1 製備奈米鈀觸媒墨水 31
3.2.2 基材表面改質處理 32
3.2.3 噴印奈米鈀觸媒墨水 34
3.2.4 無電鍍金屬化實驗 35
4. 結果與討論 37
4.1 PET表面金屬化 37
4.1.1 聚電解質(PDDA)前處理 38
4.1.2 矽烷偶合劑前處理 50
4.2 PI表面金屬化 54
4.2.1 聚電解質(PDDA)前處理 56
4.2.2 矽烷偶合劑前處理 63
5. 結論 67
6. 參考文獻 68
[1]Kim, D. J., Jeong, S. H., Lee, S. H., Moon J. H., and Song, J. K., “Ink-jet printing of organic semiconductor for fabricating organic thin-film transistors: Film uniformity control by ink composition,” Synthetic Metals, Vol. 159, pp. 1381-1385, 2009
[2]Kim, H. S., Kang, J. S., Park, J. S., Hahn, H. T., Jung, H. C., and Joung, J. W., “Inkjet printed electronics for multifunctional composite structure,” Composites Science and Technology, Vol. 69, pp. 1256-1264, 2009
[3]Busato, S., Belloli, A., and Ermanni, P., “Inkjet printing of palladium catalyst patterns on polyimide film for electroless copper plating,” Sensors and Actuators B, Vol. 123, pp. 840–846, 2007
[4]陳文丁、曾俊傑、張章平、葛明德,“結合噴墨列印方式與無電電鍍於軟性基材上製作RFID天線”, 國防大學八十三週年校慶基礎學術研討會,2007。
[5]Elmqvist, R., “Measuring Instrument of the Recording Type,” US Patent: 2566443, U.S.A, 1951.
[6]Sweet, R. G., “High Frequency Recording with Electrostatically Deflected Ink-Jets,” Review of Scientific Instruments, Vol. 36, pp. 131-136, 1965.
[7]May F. T., “IBM Word Processing Developments” IBM Journal of Research and Development, Vol. 25 , NO. 5, 1981.
[8]Zoltan, S. I., “Pulse Droplet Ejection System,” US Patent: 3683212, U.S.A, 1974.
[9]Kyser, E. L., and Sears, S. B., “Method and Apparatus for Recording with Writing Fluids and Drop Projection Means Therefore,” US Patent: 3946398, U.S.A, 1976.
[10]Vaught, J. L., Cloutier, F. L., Donald D. K., Meyer J. D., Tacklind C. A., and Taub, H. H., “Thermal Ink-Jet Printer,” US Patent: 4490728, U.S.A, 1979.
[11]http://www.imaging.org/ist/resources/tutorials/inkjet.cfm(2013.5.12)
[12]Liu, Y. F., Hwang, W. S., Pai, Y. F., and Tsai, M. H., “Low temperature fabricated conductive lines on flexible substrate by inkjet printing,” Microelectronics Reliability, Vol. 52, pp. 391–397, 2012.
[13]Wu, H. C., Hwang, W. S., and Lin, H. J., “Development of a three-dimensional simulation system for micro-inkjet and its experimental verification,” Materials Science and Engineering A, Vol. 373, pp. 268-278, 2004.
[14]Liu, Y., Cui, T. H., and Varahramyan, K., “All-polymer capacitor fabricated with inkjet printing technique,” Solid-State Electronics, Vol. 47, pp. 1543–1548, 2003.
[15]Chen, F., and Liu, P., “Conducting polyaniline nanoparticles encapsulated with polyacrylate via emulsifier-free seeded emulsion polymerization and their electroactive films,” Chemical Engineering, Vol. 168, pp. 964–971, 2011.
[16]Eoma, S. H., Senthilarasu, S., Uthirakumar, P., Yoon, S. C., Lim J., Lee, C. J., Lim, H. S., Lee, J., and Lee, S. H., “Polymer solar cells based on inkjet-printed PEDOT:PSS layer,” Organic Electronics, Vol. 10, pp. 536–542, 2009.
[17]Bae, K. D., Baek, S. S., Lim, H. T., Kuk, K., and Ro K. C., “Development of the new thermal inkjet head on SOI wafer,” Microelectronic Engineering , Vol. 78-79, pp. 158–163, 2005.
[18]Bieri, N. R., Chung, J., Poulikakos, D., and Grigoropoulos, C. P., ”Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension,” Superlattices and Microstructures, Vol. 35, pp. 437–444, 2004.
[19]Hwan, K. S., Chung J. W., Pan, H., Grigoropoulos, C. P., and Dimos, P.,” Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing,” Sensors and Actuators A, Vol. 134, pp. 161–168, 2006.
[20]Cui, W. J., Lu, W. S., Zhang, Y. K., Lin, G. H., Wei, T. X., and Jiang, L., “Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology,” Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 358, pp. 35-41, 2010.
[21]Tai, Y. L., Yang, Z. G., and Li, Z. D., “A promising approach to conductive patterns with high efficiency for flexible electronics,” Applied Surface Science, Vol. 257, pp. 7096–7100, 2011.
[22]Yung, K. C., Gu, X., Lee, C. P., and Choy, H. S., “Ink-jet printing and camera flash sintering of silver tracks on different substrates,” Journal of Materials Processing Technology, Vol. 210, pp. 2268–2272, 2010.
[23]Jolke, P., De, L. A. W. M., Hendriks, C. E., and Schubert, U. S., “Inkjet-printed silver tracks- low temperature curing and thermal stability,” Journal of Materials Chemistry, Vol. 18, pp. 3209–3215, 2008.
[24]Park, B. K., Kim, D. J., Jeong, S. H., Moon, J. H., and Kim, J. S., “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films, Vol. 515, pp. 7706-7711, 2007.
[25]Kim, H. S., Kang, J. S., Park, J. S., Hahn, H. T., Jung, H. C., and Joung, J. W., “Inkjet printed electronics for multifunctional composite structure,” Composites Science and Technology, Vol. 69, pp. 1256–1264, 2009.
[26]洪金賢,“軟性電子材料基板的介紹與應用”,工業材料雜誌, 第243期,第159-168頁,2007。
[27]Chen, W. D., Sung, Y., Chang, C. P., Chen Y. C., Ger, M. D., “The preparation of thermo-responsive palladium catalyst with high activity for electroless nickel deposition, ” Surface and Coatings Technology, 204, 2130-2135. SCI
[28]曾俊傑、陳彥政、張章平、郭俊良、葛明德 “奈米鈀活化液應用於無電電鍍銅之研究”,中正嶺學報,40, No. 1, 75-84。EI
[29]Chen, W. D., Lin, Y. H., Chang, C. P., Sung, Y., Liu, Y. M., Ger, M. D., “Fabrication of High-Resolution Conductive Line via Inkjet Printing of Nano-Palladium Catalyst onto PET Substrate,” Surface and Coatings Technology, 205, 4750-4756. SCI
[30]陳文丁、宋鈺、葛明德、張章平、曾俊傑 “表面附著有奈米金屬粒子的聚苯乙烯複合材料的製備方法”,中華民國專利證書號: I324616,2010
[31]Chen, W. D., Lin, Y. H., Chang, C. P., Sung, Y., Liu, Y. M., Ger, M. D., “ Process for preparing a metal styrene polymer composite having nano metallic particles deposited thereon ”, U.S. patent 7,662,434, U.S.A, 2010
[32]宋鈺、葛明德、張章平、曾俊傑、陳文丁 “基材表面及通孔的金屬化方法及其所使用的觸媒” 中華民國專利(申請案號:97136550)
[33]Chen, W. D., Lin, Y. H., Chang, C. P., Sung, Y., Liu, Y. M., Ger, M. D., “Metallization on a surface and in through-holes of a substrate and a catalyst used therein” U.S. Patent (APPL No. 12/289,542)
[34]宋鈺、葛明德、張章平、曾俊傑、陳文丁 “於一基材形成金屬圖案之方法”,中華民國專利,中華民國專利(專利權證書號:I361208)
[35]宋鈺、葛明德、張章平、曾俊傑、陳文丁 “於一基材形成金屬圖案之方法”,中華民國專利,中華民國專利(專利權證書號:I361208)
[36]Prasanta, S., and Das, S. K., “Tribology of electroless nickel coatings – A review,” Materials and Design, Vol. 32, pp. 1760–1775, 2011.
[37]Blodgett, K. B., and Langmuir I., “Built-up films of barium stearate and their optical properties,” Physical Review, Vol. 51, pp. 964-982, 1937.
[38]Crespilho, F. N., Zucolotto, V., Oliveira, J. O. N., and Nart, F. C., “Electrochemistry of Layer-by-Layer Films: a review,” International Journal of Electrochemical Science, Vol. 1, pp. 194-214, 2006.
[39]Kim, Y. H., Cai, G., Lee, W. J., Hyung, K. H., Cho, B. W., Lee, J. K., and Han, S. H., “Ionic charge-selective electron transfer on self-assembled polyelectrolyte-modified ITO electrode,” Current Applied Physics, Vol. 9, pp. S65–S68, 2009.
[40]Decher, G., Eckle, M., Schmitt, J., and Struth, B., “Layer-by-Layer assembled multicomposite films,” Current Opinion In Colloid and Interface Science, Vol. 3, pp. 32-39, 1998.
[41]Peng, C., Thio, Y. S., and Gerhardt, R. A., “Enhancing the Layer-by-Layer Assembly of Indium Tin Oxide Thin Films by Using Polyethyleneimine,” The Journal of Physical Chemistry C, Vol. 114, pp. 9685-9692, 2010.
[42]Liu, H. Y., and Hu, N. F., “Comparative Bioelectrochemical Study of Core-Shell Nanocluster Films with Ordinary Layer-by-Layer Films Containing Heme Proteins and CaCO3 Nanoparticles,” The Journal of Physical Chemistry B, Vol. 109, pp. 10464-10473, 2005.
[43]Basarir, F., and Yoon, T. H., “Preparation of gold patterns on polyimide coating via layer-by-layer deposition of gold nanoparticles,” Journal of Colloid and Interface Science, Vol. 352, pp. 11-18, 2010.
[44]Katainen, J., Paajanen, M., Ahtola, E., Pore, V., and Lahtinen, J., “Adhesion as an interplay between particle size and surface roughness,” Journal of Colloid and Interface Science, Vol. 304, pp. 524–529, 2006.
[45]Derby, B., “Inkjet printing ceramics: From drops to solid,” Journal of the European Ceramic Society, Vol. 31, pp. 2543–2550, 2011.
[46]Huang, D., Liao, F., Molesa, S., Redinger, D., and Subramanian, V., “Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics,” Journal of The Electrochemical Society, Vol. 150, No. 7, pp. G412-G417, 2003.
[47]Sze, S. M. Semiconductor Device: Physics and Technology, Johnwiley, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top