1.Akersa, K. S., G. D. Sinks, and T. W. Schultz. Structure—toxicity relationships for selected halogenated aliphatic chemicals. Environ. Toxicol. and Pharmacol. 7:33-39, 1999.
2.Basak, S. C., B. D. Gute, B. Luc, and S. N. N. Trinajstic. A comparative QSAR study of benzamidines complement—inhibitory activity and benzene derivatives acute toxicity. Computers and Chemistry 24:181—191, 2000.
3.Bearden, A. P., G. D. Sinks, W. H. J. Vaes, E. U. Ramos,
J. L. M. Hermens, and T. W. Schultz. Bioavailability, Biodegradation, and Acclimation of Tetrahymena pyriformis to 1-Octanol. Ecotoxicol. and Environ. Safety 44:86-91,1999.
4.Bearden, A. P., and T. W. Schultz. Struvture-Activity Relationships For Pimephales and Tetrahymena:A Mechanism of Action Approach. Environmental Toxicology and Chemistry 16:1311—1317, 1997.
5.Cottrell, M. B., and T. W. Schultz. Structure—Toxicity Relationships for Methyl Esters of Cyanoacetic Acids to Tetrahymena pyriformis. Bull. Environ. Contam. Toxicol. 70:549—556, 2003.
6.Cronin, M. T. D., A. O. Aptula, C. D. Judith, T. I. Netzeva, P. H. Rowe, I. V. Valkova, and T. W. Schultz. Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 49 : 1201-1221, 2002.
7.Cronin, M. T. D., B. W. Gregory, and T. W. Schultz. Quantitative Structure-Activity Analyses of Nitrobenzene Toxicity to Tetrahymena pyriformis Chem. Res. Toxicol. 11:902-908, 1998.
8.Cronin, M. T. D., and T. W. Schultz. Structure-Toxicity Relationships for Phenols To Tetrahymena pyriformis. Chemosphere. 32:1453-1468, 1996.
9.Cronin, M. T. D., and T. W. Schultz. Structure—Toxicity Relationships for Three Mechanisms of Action of Toxicity to Vibrio fischeri. Ecotoxicol. and Environ. Safety 39: 65—69, 1998.
10.Cronin, M. T. D., and T. W. Schultz. Development of Quantitative Structure-Activity Relationships for the Toxicity of Aromatic Compounds to Tetrahymena pyriformis: Comparative Assessment of the Methodologies. Chem. Res. Toxicol.14: 1284-1295, 2001.
11.Gibson, D.T., M. Hensley, H. Yoshioka, and T.J. Mabry.
Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry. 9:1626—1630, 1970.
12.Johnson, C. D.The Hammett equation-(Cambridge texts in Chemistry and Biochemistry),Elmore,D.T., J.Lewis,;K.Schofield, D.Sc.and ,J.M.Thomas, Eds.,London,1980.
13.Lewis, D. F. V. A Quantitative Structure-Activity Relationship study On a series of 10 para-substituted toluenes binding to Cytochrome P4502B4(CYP2B4),and their hydroxylation rates.Biochemical Pharmacol:50,619-625, 1995.
14.McFarland, J. W. On the parabolic relationship between drug potency and hydrophobicity. J. Med. Chem. 13:1092—1196, 1970.
15.Mekapati, S. B. and C. Hansch. On the Parametrization of the Toxicity of Organic Chemicals to Tetrahymena pyriformis.The Problem of Establishing a Uniform Activity. J. Chem. Inf. Comput. Sci. 42:956-961, 2002.
16.Niculescu, S. P., K. L. E. Kaiser., and T. W. Schultz. Modeling the Toxicity of Chemicals to Tetrahymena pyriformis Using Molecular Fragment Descriptors and Probabilistic Neural Networks. Arch. Environ. Contam. Toxicol. 39:289—298, 2000.
17 Ramos, E. U., W. H. J. Vaes, P. Mayer, and J. L.M. Hermens.Algal growth inhibition of Chlorella pyrenoidosa by polar narcotic pollutants: toxic cell concentrations and QSAR modeling. Aquatic Toxicol:46,1—10, 1999.
18.Ren, S. Predicting three narcosis mechanisms of aquatic toxicity. Toxicol Letters 133:127—139, 2002.
19.Ren, S., and T. W. Schultz. Identifying the mechanism of aquatic toxicity of selected compounds by hydrophobicity and electrophilicity descriptors. Toxicol Letters:129,151—160, 2002.
20.Schultz, T. W. Structure-Toxicity Relationships for Benzenes Evaluated with Tetrahymena pyriformis. Chem. Res. Toxicol.12: 1262-1267,1999.
21.Schultza, T. W., M. T. D. Cronin, and T. I. Netzeva. The present status of QSAR in toxicology. Journal of Molecular Structure 622:23-28, 2003.
22.Schultz, T. W., S. E. Bryant, and T. S. Kissel. Toxicological Assessment in Tetrahymena of Intermediates in Aerobic Microbial Transformation of Toluene and p-Xylene. Bull. Environ. Contam. Toxicol. 56:129-134, 1996.
23.Schultz, T.W., G.D. Sinks, and A. P. Bearden. QSARs in aquatic toxicology: a mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis and Vibrio .scheri. In: J. Devillers,(Ed) Comparative QSAR. Taylor and Francis, London, pp. 51-109, 1998.
24 Schultz, T. W., and V. A. Tucker. Structure-Toxicity Relationships for the Effects of N- and N,N_-Alkyl Thioureas to Tetrahymena pyriformis. Bull. Environ. Contam. Toxicol. 70:1251—1258, 2003.
25.Seward, J. R., E. L. Hamblen, and T. W. Schultz. Regression comparisons of Tetrahymena pyriformis and Poecilia reticulata toxicity. Chemosphere 47:93-101, 2002.
26.Seward, J. R., G. D. Sinks, and T. W. Schultz. Reproducibility of toxicity across mode of toxic action in the Tetrahymena population growth impairment assay. Aquatic Toxicology 53:33—47, 2001.
27.Sixt, S., Quantitative Structure-Toxicity Relationship For 80 Chlorinated Compounds Using Quantum Chemical Descriptors. Chemosphere:30,2397-2414, 1995.
28.Todd, M. M., and D. M. Young. Prediction of the Acute Toxicity (96-h LC50) of Organic Compounds to the Fathead Minnow (Pimephales promelas) Using a Group Contribution Method. Chem. Res. Toxicol.14:1378-1385, 2001.
29.Wackett, L.P., L.D. Kwart, and D.T. Gibson. Benzylic
monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida. Biochemistry. 27:1360—1367, 1988.
30.Weber, F.J., K. C. Hage, and J. A. M. De Bont. Growth of the Fungus Cladosporium sphaerospermum with Toluene as the Sole Carbon and Energy Source. .Applied and Environ. Microbiol.:61, 3562—3566, 1995.
31.駱尚廉主編,環境保護辭典,中華民國環境工程學會,1997.
32.環境檢驗所檢測方法網站,
http://www.niea.gov.tw/analysis/method/m_t.asp
33.劉惠雲,氯酚與細菌反應的研究,國立成功大學化學系碩士論文, 1991.34.林淑茹,芳香族化合物對假單胞菌之瞬時毒性與化合物結構關係
之研究,國立成功大學化學系碩士論文,1999.