|
References 1.P. R. Beesack and K. M. Das, Extensions of Opial’s inequality, Pacific j. Math. 26(1968),215-232. 2.K. M. Das, An inequality similar to Opial’s inequality, Proc. Amer. Math. Soc.22 (1969),258-261. 3.A. L. Edelson and J. D. Schuur, Nonoscillatory solution of (rx(n))(n) f(t,x)x=0, Pacific J. Math. 109(1983),313-325. 4.A. M. Fink, On Opial’s inequality for f(n), Proc. Amer. Math. Soc.115(1992),177-181. 5.C. H. Fitzgerald, Opial-type inequality that involve higher order derivatives, in‘‘General inequality,’’4th ed., pp. 25-36, W. Walter, Basel 1984. 6.L. Ju-Da , Opial-type inequalities involving several higher order derivatives, J. Math. Anal. Appl. 167(1992),98-110. 7.E. R. Love, Inequalities like Opial’s inequality, in ‘‘Rocznik Naukowo- Dydaktyczny Wsp W Krakowie Zeszyt 97,’’ Prace Matematyczne, Vol. XI, pp. 109-118,1985. 8.D. S. Mitrinović,‘‘analytic Inequalities,” Springer-Verlag, Berlin/New York, 1970. 9.J. Myjak, Boundary value problems for nonlinear differential and difference equations of the second order, Zeszyty Nauk. Univ. Jagellon Prace Mat. 15(1971), 113-123. 10.C. Olech, A simple proof of a certain result of Z. Opial, Ann.Polon Math.8(1960), 61-63. 11. Z. Opial, Sur une inegalite, Ann. Polon Math.8(1960),29-32. 12. B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl. 120(1986),547-556. 13.B. G. Pachpatte, On some new generalizations of Opial inequality, Demonstratio Math.19(1986),281-291. 14.B. G. Pachpatte, On certain integral inequalities related to Opial’s inequality, Period. Math. Hungar. 17(1986),119-125. 15.J. Traple, On a boundary value problem for systems of ordinary differential equations of second order, Zeszyty Nauk. Univ. Jagellon Prace Mat. 15(1971) 159-168. 16.D. Willett, The existence-uniqueness theorem for an nth order linear ordinary differential equation, Amer. Math. Monthly 75(1968), 174-178. 17. P. Y. H. Pang and R. P. Agarwal, On an Opial type inequality due to Fink, J. Math. Anal. Appl. 196 (1995),748-753.. 18. B. G. Pachpatte, On Opial-type inequalities involving higher Order derivatives, J. Math. Anal. Appl. 190(1995),763-773.
|