|
[1]Manz, A., Graber, N., and Widmer, H. M., “Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing,” Sensors and Actuators B, Vol.1, pp.244-248, 1990. [2]Paegel, B. M., Hutt, L. D., Simpson, P. C., and Mathies, R. A., “Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels,” Analytical Chemistry, Vol.72, No.14, pp.3030-3037, 2000. [3]Seiler, K., Harrison, D. J., and Manz, A., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantization, Separation Efficiency,” Analytical Chemistry, Vol.65, pp.1481-1488, 1993. [4]Harrison, D. J., Glavina, P. G., and Manz, A., “Towards Miniaturized Electrophoresis and Chemical Analysis System on Silicon: an Alternative to Chemical Sensor,” Sensors and Actuators B, Vol.10, pp.107-116, 1993.
[5]Fan, Z. H. and Harrison, D. J., “Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections,” Analytical Chemistry, Vol.66, No.1, pp.177-184, 1994. [6]Seiler, K., Fan, Z. H., Fluri, K., and Harrison, D. J., “Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip,” Analytical Chemistry, Vol.66, pp.3485-3491, 1994. [7]Helmholtz, H. V., “Studien über Elektrische Grenzschichten,” Wiedemann′s Annual Physical Chemistry, Vol.7, pp.337-382, 1879. [8]Kohlrausch, F., “Ueber Concentrations-Verschiebungen durch Electrolyse im Inneren von Lösungen und Lösungsgemischen,” Annual Review of Physical Chemistry, Vol.62, pp.209-239, 1897. [9]Tiselius, A., “The Moving Boundary Method of Studying the Electrophoresis of Proteins,” Nova Acta Regia Societatis Scientiarum Upsaliensis Series IV, Vol.7, No.4, 1937. [10]Mikkers, F. E. P., Everaerts, F. M., and Verheggen, Th. P. E. M., “High-performance Zone Electrophoresis,” Journal of Chromatography, Vol.169, pp.11-20, 1979. [11]Jorgenson, J. W. and Lukacs, K. D., “Zone Electrophoreisis in Open-Tubular Glass Capillaries,” Analytical Chemistry, Vol.53, pp.1298-1302, 1981. [12]Harrison, D. J., Manz, A., Fan, Z., and Ludi, H., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Analytical Chemistry, Vol.64, No.17, pp.1926-1932, 1992. [13]Muzikar, J., Van De Goor, T., GaŠ, B., and Kenndler, E., “Electrophoretic Mobilities of Large Organic Ions in Nonaqueous Solvents: Determination by Capillary Electrophoresis in Propylene Carbonate, N,N-dimethylformamide, N,N,-dimethylacetamide, Acetonitrile and Methanol,” Electrophoresis , Vol.23, No.3, pp.375-382, 2002.
[14]Effenhauser, C. S., Paulus, A., Manz, A., and Widmer, H. M., “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device,” Analytical Chemistry, Vol.66, No.18, pp.2949-2953, 1994. [15]Burggraf, N., Manz, A., Verpoorte, E., Effenhauser, C. S., and , H. M., de Rooij, N. F., “A Novel Approach to Ion Separations in Solution: Synehronized Cyclic. Capillary Electrophoresis (SCCE),” Sensors and Actuators. B, Vol.20, No.2/3, pp.103-110, 1994.
[16]Jacobson, S. C., Koutny, L. B., Hergenroder, R., Moore, A. W., and Ramsey, J. M., “Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor,” Analytical Chemistry, Vol.66, No.20, pp.3472-3476, 1994. [17]Culbertson, C. T. and Jorgenson, J. W., “Flow Counterbalanced Capillary Electrophoresis,” Analytical Chemistry, Vol.66, No.7, pp.955-962, 1994. [18]Rawool, A. S. and Mitra S. K., “Numerical Simulation of Electroosmotic Effect in Serpentine Channels,” Microfluidics and Nanofluidics, Vol.2, pp.261-269, 2006. [19]Rice, C. I. and Whitehead, R., “Electrokinetic Flow in a Narrow Capillary,” The Journal of Physical Chemistry, Vol.69, No.11, pp.4017-4024, 1965. [20]Andreev, V. P. and Lisin, E. E., “On the Mathematical Model of Capillary Electrophoresis”, Chromatographia, Vol.37, No.3/4, pp.202-210, 1993.
[21]Yang, C., Li, D., and Masliyah, J. H., “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects”, International Journal of Heat and Mass Transfer, Vol.41, No.24, pp.4229-4249, 1998. [22]Hu, L., Harrison, J. D., and Masliyah, J. H., “Numerical Model of Electrokinetic Flow for Capillary Electrophoresis,” Journal of Colloid and Interface Science, Vol.215, No.2, pp.300-312, 1999. [23]Dutta, P. and Beskok, A., “Analytical Solution of Combined Electroosmotic /Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects,” Analytical Chemistry, Vol.73, No.9, pp.1979-1986, 2001. [24]Ren, L. and Li, D., “Electroosmotic Flow in Heterogeneous Microchannels,” Journal of Colloid and Interface Science, Vol.243, No.1, pp.255-261, 2001. [25]Patankar, N. A. and Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol.70, No.9, pp.1870-1881, 1998. [26]Tang, G Y., Yang, C. J., and Gong, H. Q. “Modeling of Electroosmotic Flow and Capillary Electrophoresis with the Joule Heating Effect: The Nernst-Planck Equation versus the Boltzmann Distribution,” Langmuir, Vol.19, 2, pp.10975-10984, 2003. [27]Hiemenz, P. C., Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, 1986. [28]Hunter, R. J., Zeta Potential in Colloid Science: Principles and Applications, Academic Press, New York, 1981. [29]Chee, G. L. and Wan, T. S. M., “Reproducible and High-speed Separation of Basic Drugs by Capillary Zone Electrophoresis,” Journal of Chromatography, Vol.612, No.1, pp.172-177, 1993. [30]Attard, P., Antelmi, D., and Larson, I., “Comparison of the Zeta Potential with the Diffuse Layer Potential from Charge Titration,” Langmuir, Vol.16, No.4, pp.1542-1552, 2000. [31]Dawson, J. M., “Particle Simulation of Plasma,” Reviews of Modern Physics, Vol.55, No.2, pp.403-447, 1983. [32]Hockney, R. W. and Eastwood, J. W., Computer Simulation Using Particles, Institute of Physics Publishing Ltd., 1988. [33]Birdsall, C. K. and Langdon, A. B., Plasma Physics via Computer Simulation, McGraw-Hill, New York, pp.20-22, 1985. [34]Spirkin, A. M., A Three-dimensional Particle-in-Cell Methodology on Unstructured Voronoi Grids with Applications to Plasma Microdevices. Ph.D. Dissertation, Mechanical Engineering, Worcester Polytechnic Institute, Massachusetts, USA, 2006. [35]Courant, R., ”Variational Method for the Solutions of Problems of Equilibrium and Vibrations,” Bull. Amer. Math. Soc., Vol.49, 1943. [36]Turner, M. J., Clough, R. W., Martin, H. C., and Topp, L. C., ”Stiffness and Deflection Analysis of Complex Structures,” J. Aeronent Sci. Vol.23, No.9, 1956. [37]Clough, R. W., “The Finite Element Method in Plane Stress Analysis,” Pro. 2nd ASME Conference on Electronic Compution, Pitsburgh, Pa., Sept. 1960. [38]Besseling, J. F., “The Complete Analogy Between the Matrix Equations and the Continuous Field Equations of Structural Analysis,” International Symposium on Analogue and Digital Techniques Applied to Aeronautics, Liege, Belgium, 1963. [39]Melosh, R. J., “Basis for Derivation of Matrics for the Direct Stiffness Method,” AIAA., Vol.1, 1963. [40]Jones, R. E., “A Generalization of the Direct Stiffness Method of Structural Analysis,” AIAAJ., Vol.2, 1964. [41]Lewis, R. W., Fundamentals of the Finite Element Method for Heat and Fluid Flow. John Wiley & Sons., 2004.
|