跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許振宏
研究生(外文):Hsu Jenn-Hung
論文名稱:豬糞堆肥之重金屬及有機物化學特性與其於土壤之應用研究
論文名稱(外文):Chemical Characterization of Heavy Metal and Organic Matter in Swine Manure Compost and Its Amended Soils
指導教授:駱尚廉駱尚廉引用關係
指導教授(外文):Lo Shang-Lien
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:237
中文關鍵詞:固液分離豬糞渣堆肥重金屬有機物轉化序列萃取土壤FTIR13C-NMR
外文關鍵詞:separated swine manurecompostheavy metalorganic matter transformationsequential extractionsoilFTIR13C-NMR
相關次數:
  • 被引用被引用:24
  • 點閱點閱:961
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
由於豬隻飼料之添加,豬糞堆肥中常含有高量Cu 、Mn及Zn,而有機物是堆肥中最主要且重要之成份。本研究採取8個養豬場腐熟之固液分離豬糞渣(separated swine manure solids, SSMS)堆肥成品,探討堆肥中Cu 、Mn、Zn及有機物之化學特性。並以1個養豬場之新鮮SSMS進行堆肥化,探討堆肥化作用對這些特性之影響,與堆肥化期間有機物之轉化。於堆肥之應用研究方面,本研究探討SSMS堆肥對兩種污染土壤中Cd、Pb、Cu、Zn、Cr及Ni等六種重金屬及有機物化學特性之影響。本研究並找出包括pH變化及堆肥腐熟度不足所導致之固相有機物溶解及外來溶解性有機物加入等影響堆肥與土壤中重金屬溶出性與移動性之因子。期能助於SSMS堆肥之農地利用,減少對環境之危害。
本研究採用一系列的萃取技術,包括去離子水萃取、以鹼萃取腐植質與金屬、合成酸雨階梯式批次萃取、序列萃取、不同pH萃取、豬糞尿有機廢水萃取等,以探討堆肥與土壤中重金屬之溶出性等特性。以霍氏轉換紅外線光譜(FTIR)及碳13-核磁共振光譜(13C-NMR)分析方法,探討堆肥化期間有機物之轉化。
8個養豬場共16個堆肥成品中,Cu含量為132∼1380 mg/kg,Mn含量為197∼1135 mg/kg,Zn含量為372∼2840 mg/kg。序列萃取之可交換相量、合成酸雨之第一批次萃出量、及於中性pH之萃出量顯示,一般堆肥成品中Cu、Mn及Zn之溶出性與有機碳之溶解性均低(均約< 6%)。其中F2堆肥成品由於腐熟度不足,使得堆肥中有機物大量溶解(18%),導致Cu之大量溶出(高達20%)。8個堆肥成品中,Cu、Mn及Zn之化學型態分別主要分佈於有機物相、氧化物相及碳酸鹽相,顯示這些元素於環境中潛在移動性或植物有效性大小依序為Zn>Mn>Cu。Cu於以鹼萃取腐植質時之高萃出性(>80%);於合成酸雨四批次萃取步驟中,萃出性隨有機碳之溶解性逐次降低;及於pH>8時,萃出性隨有機碳溶解性之增加而增加;這些結果顯示堆肥中Cu主要是以與有機物結合態存在的。相反地,Mn及Zn與有機物之親和力低,使得此二元素於鹼之萃出性極低。
堆肥成品中Cu、 Mn及Zn之溶出性與化學型態分佈等特性與元素含量無關。但是,腐熟度不足與pH變化所導致之有機物溶解等因子,顯著促進Cu之溶出性,對Mn及Zn之影響則較小。
堆肥化期間,灰份含量、C/N比、金屬元素含量、腐植碳含量、HA/FA 比等參數之變化均相互顯著相關,均可做為評估SSMS堆肥穩定度之參數。這些參數均顯示,有機物之分解速率於前18天極為快速,之後逐漸緩和,從第49天至堆肥結束期間極為緩慢。堆肥化期間,Cu、Mn及Zn初始含量分別為343、121及577 mg/kg,分別增加至結束時之976、331及1540 mg/kg,均增加約2.7倍。Cu、Mn及Zn之水溶性量均隨有機碳之溶解性於開始逐漸增加至第18 天達最高值,然後逐漸降低直至堆肥結束。Cu、Mn及Zn之化學型態除水溶性外,不受堆肥齡及元素含量逐漸增加之影響。腐植質(humic substances)含量由開始之28%增加至結束時之44%,顯示有機物腐植化之過程。
FTIR與13C-NMR之分析結果頗為一致,均顯示容易分解之有機物,例如脂肪鏈、多醣類、醇類及蛋白質等成分於堆肥化期間逐漸分解,而使得堆肥成品具更高之芳香族結構及更高之安定性,亦顯示異質性有機物經堆肥化後,已經轉化為均質性之成品。
本研究採用之觀音鄉土壤屬壤砂土,Cd及Pb含量高。蘆竹鄉土壤屬黏土,Cd、Pb、Cu及Zn含量亦高。序列萃取結果顯示,兩種土壤之Cd及Pb均主要分佈於可交換相,碳酸鹽相及氧化物相三相中,三相之總合均約 > 70%;DTPA萃出性與植物攝取試驗結果亦均顯示,兩種土壤中Cd與Pb之高潛在移動性與植物有效性。蘆竹土壤中Cu主要分佈於有機物相,Zn主要分佈於可交換相。豬糞堆肥有機物料之添加,使得兩種土壤中之Cu及Cr有機物相量增加,及Pb之分佈大幅往後移至殘渣相,降低這些重金屬之潛在移動性。
合成酸雨與有機廢水都增進污染土壤中重金屬溶解度。有機物含量低之觀音砂質土壤,其合成酸雨萃取液pH下降達2 pH單位,導致該土壤中Cd溶出量高達32%。豬糞尿液有機廢水亦大幅增進土壤中與溶解性有機物之親和力高之Cu與Ni之溶解度。當pH > 8時,土壤中Cu溶出量隨土壤有機物溶解度而升高,其餘各種重金屬溶出量維持低量。
本研究中,SSMS堆肥中之Cu與Zn展現與土壤中Cu與Zn相同之化學特性。另一方面,化學與光譜分析結果,SSMS堆肥中有機物展現與土壤有機物許多相同之化學特性。因此,當SSMS堆肥施放農地時,堆肥中之有機碳可能即進入土壤之碳循環。
關鍵詞:固液分離豬糞渣、堆肥、腐熟度、有機物、腐植質、土壤、重金屬、溶出性、萃出性、序列萃取、合成酸雨階梯式萃取、豬糞尿液、有機物轉化、FTIR、13C-NMR。
英文摘要
ABSTRACT
Swine manure was comprehensively characterized with respect to Cu, Mn, and Zn due to feed additives. Eight separated swine manure solids (SSMS) composts were collected to study the leachability and identify factors influencing the leachability of these elements from these composts to assess its environmental hazard. Composting of SSMS was also conducted to evaluate criteria indicating compost maturity, to determine the characterization of trace elements and transformation of organic matter during the process. We also evaluate the effect of SSMS compost on fractionation and characterization of Cd, Pb, Cu, Zn, Cr and Ni in two contaminated soils.
Several chemical properties were determined to assess the degree of maturity of eight SSMS composts. A series of extraction schemes were used to determine base-extractable metals and their distribution on humic substance fractions (humic acid, HA; fulvic acid, FA; and nonhumic fraction, NHF), chemical fractionation, synthetic acid rainwater (SAR) solubility, and extractability at various pH levels of metals in composts. We evaluated the influence of dissolved organic carbon from compost on the extractability of these metals. The SSMS composts were enriched with Cu (154-1380 mg kg-1), Mn (239-976 mg kg-1), and Zn (372-2840 mg kg-1). The SAR and neutral pH extractable fractions of Cu, Mn, Zn, and organic C were generally low (< 10% of their total content). Copper leachability in F2 compost, however, was high (20%), resulting from immaturity and associated substantial dissolution of organic C (18%). High extractability (86%) of Cu from HS extraction and at high pH levels (> 8) resulted from dissolution of organic matter. The major portions of Cu, Mn, and Zn were found in the organic, oxide, and carbonate fractions, respectively, regardless of their content in these composts, indicating that the potential leachability of elements in the environment were in the order Zn > Mn > Cu. The results of this study show that Cu in SSMS compost is primarily bound to organics. Conversely, the the affinity of Mn and Zn for organics was low.
The C/N ratio and ash content exhibited a typically high rate of change during the first 49 d of the composting process and leveled off thereafter. All metal concentrations (mg/kg) increased approximately 2.7 folds in the final compost due to decomposition of organic matter. Waters-soluble fractions of Cu, Mn, Zn and organic C increased to a maximum at Day 18 and declined thereafter. Parameters such as ash content, C/N ratio, metal concentration, water extract EC, extracted humic C, and the HA/FA ratio can be used as maturity indices in this research.
During the composting process, the major portions of Cu, Mn, and Zn were found in the organic, oxide, and carbonate fractions, respectively. Metal distributions in different chemical fractions were generally independent of composting age and, thus, independent of respective total metal concentrations in the compost.
The finding in FTIR and 13C-NMR spectra in this research indicate that easily degradable OM constituents, such as aliphatic chains, polysaccharides, alcohols, and protein, are decomposed. As a result, the mature compost contained more aromatic structures of higher stability. Organic matter transformation as analyzed by FTIR and NMR also suggests that the composting process transforms heterogeneous raw SSMS OM to a compositionally uniform product at the end of the process.
The Kuan-Yin soil has a texture of sand loam containing high level of Cd (135 mg/kg) and Pb (1040 mg/kg). The Lu-Chu soil has a texture of clay loam containing high level of Cd (69 mg/kg), Pb (256 mg/kg), Cu (670 mg/kg), and Zn (328 mg/kg). More than 70% of Cd and Pb in both soils were associated with the first three fractions in the sequential extraction. Copper was mainly present in the organic fraction, while Zn mostly resided in the exchangeable fraction in Lu-Chu soil. Amendment of these soils with SSMS compost increased the organic fractions of Cu and Cr and residual fractions of Pb, making these elements more immobilized in soils. The synthetic acid rainwater substantially modified Cd leachability (up to 32% of total) in Kuan-Yin soil which contained low organic matter with little effect on the leachability of Cd in Lu-Chu soil.
Copper and zinc in SSMS compost exhibit similar characteristics as these elements in soils. Chemical and spectroscopic analyses also show that organic matter in SSMS compost exhibit similar characteristics as soil organic matter. Once SSMS compost was applied to soil, compost organic matter readily entered the soil "C cycle".
Keywords: Separated swine manure solids; Compost; Maturity; Organic matter; Humic substances; Soil; Heavy metal; Leachability; Extractability; Sequential extraction; Synthetic acid rainwater cascade batch extraction; Pig slurry liquid fraction; Organic matter transformation; FTIR; 13C-NMR。
目錄
中文摘要
英文摘要
目錄
縮寫
第一章 緒論 ----------------------------------------------1
1-1 前言 ----------------------------------------------1
1-2 研究目的 ---------------------------------------------3
1-3 研究內容 ---------------------------------------------4
第二章 文獻回顧 ------------------------------------------6
2-1 國內養豬及糞尿處理現況 ---------------------------6
2-2 有機廢棄物之堆肥化 -------------------------------8
2-2-1 廢棄物之堆肥化----------------------------8
2-2-2 堆肥之腐熟度 ----------------------------9
2-2-3 生物固體之分解模式-----------------------12
2-2-4 堆肥化期間碳、氮、磷及重量之損失-----------13
2-3 堆肥之有機成分---------------------------------------------------15
2-3-1 非腐植質部分----------------------------------------------15
2-3-2 腐植質部分 ---------------------------------------------16
2-3-3 有機碳在腐植酸、黃酸及非腐植質部分之分佈-----17
2-3-4 腐植酸之基本組成與官能基 --------------------------18
2-3-5 腐植酸之光譜特性 ------------------------------------19
2-3-6 固態有機物之光譜分析-----------------------------------20
2-4 動物糞便中重金屬-------------------------------------22
2-5 生物固體中重金屬之化學特性---------------------------25
2-5-1 生物固體中重金屬之化學型態-------------------------25
2-5-2 生物固體中重金屬於腐植酸及黃酸之分佈-------------28
2-5-3 生物固體中重金屬之溶出性----------------------------29
2-6 土壤中重金屬之貯留機制 ----------------------------------------30
2-6-1 土壤溶液中無機型態之重金屬----------------------------31
2-6-2 土壤礦粒表面之吸附 --------------------------------------33
2-6-3 土壤有機物之吸附 -----------------------------------------36
2-6-4 沉澱 -----------------------------------------------------------------37
2-7 序列萃取與土壤中重金屬之化學特性---------------------------39
2-8 pH及溶解性有機物對堆肥及土壤中重金屬溶解性之影響--45
第三章 材料與方法 --------------------------------------------------49
3-1 實驗流程 -------------------------------------------------------49
3-2 固液分離豬糞堆肥成品採樣及分析 ------------------53
3-2-1 養豬場豬糞尿處理設施 -----------------------53
3-2-2 堆肥成品採樣程序 ----------------------------54
3-2-3 物理及化學性質分析 --------------------------54
3-2-4 腐植質與金屬之萃取試驗-------------------------------56
3-2-5 序列萃取試驗 ------------------------------------------57
3-2-6 合成酸雨階梯批次萃取試驗 ----------------------59
3-2-7 不同pH萃取試驗 --------------------------60
3-2-8 豬糞尿液有機廢水萃取試驗----------------------------60
3-2-9 植物攝取重金屬試驗----------------------------------------61
3-3 新鮮固液分離豬糞之堆肥化 ----------------------------------62
3-3-1 堆肥化之進行及採樣 ----------------------------62
3-3-2 基本組成及物理與化學性質分析----------------------63
3-3-3 去離子水萃取試驗-----------------------------------------63
3-3-4 腐植質與金屬之萃取試驗--------------------63
3-3-5 序列萃取試驗 ---------------------------------------64
3-3-6 霍氏轉換紅外線光譜分析 ---------------------------67
3-3-7 碳13-核磁共振光譜分析 ----------------------------------67
3-3-8 厭氧培育試驗----------------------------------------------68
3-4 土壤採樣及分析 -----------------------------------------------------69
3-4-1 污染場址概述及土壤採樣 -----------------------------69
3-4-2 土壤之物理化學性質分析 -----------------------------70
3-4-3 土壤重金屬含量分析 -------------------------------------72
3-4-4 土壤以不同萃取劑之萃取試驗 --------------------------72
3-4-4-1 去離子水萃取試驗 ------------------------------72
3-4-4-2 DTPA萃取試驗 ----------------------------------72
3-4-4-3 0.1 M HCl萃取試驗 -----------------------------73
3-4-5 土壤之序列萃取試驗 --------------------------------------73
3-4-6 土壤添加豬糞堆肥有機物料之序列萃取試驗 --------73
3-4-7 土壤於不同pH之萃取試驗 -----------------------------73
3-4-8 合成酸雨階梯批次萃取試驗 -----------------------------74
3-4-9 土壤以豬糞尿液有機廢水之萃取試驗 --- -------------74
3-4-10 植栽攝取重金屬試驗 -----------------------------------74
第四章 豬糞堆肥成品中重金屬與有機物之化學特性 -----------------76
4-1 堆肥之物理及化學性質-------------------------------76
4-2 堆肥之基本組成 -------------------------------------77
4-3堆肥中銅、錳及鋅含量 -------------------------------79
4-4 堆肥中腐植質含量與鹼萃出性金屬----------------------------81
4-4-1 腐植質含量------------------------------------------------81
4-4-2 鹼萃出性金屬及其於腐植質各型態之分佈 ---------83
4-5 序列萃取與堆肥中銅、錳及鋅之化學型態---------------85
4-6 堆肥中金屬及有機物之水溶性 -------------------------90
4-7 pH對堆肥中金屬及有機物溶解性之影響 -------------93
4-8 有機廢水對堆肥中金屬溶出性之影響 ----------------95
4-9 植物攝取金屬 -------------------------------------------97
4-10 各種萃取技術之比較------------------------------------100
4-11 綜合討論 ---------------------------------------------------102
第五章 豬糞堆肥化期間金屬特性變化及有機物之轉化 -----------104
5-1 堆肥化之進行----------------------------------------------104
5-2 重量、碳、氮及磷之損失---------------------------107
5-3 生物固體粒之分解模式----------------------------------109
5-4 金屬元素之濃縮效應 ------------------------------112
5-5 堆肥成份之水溶性 ----------------------------------114
5-5-1 有機碳之水溶性 ------------------------------115
5-5-2 銅錳及鋅之水溶性--------------------------------118
5-5-3 其他離子之水溶性-------------------------120
5-6 腐植質含量與鹼萃出性金屬----------------------------124
5-6-1 腐植質含量-----------------------------------------124
5-6-2 鹼萃出性金屬與其於腐植質各型態之分佈--127
5-7 序列萃取 -------------------------------------------------129
5-7-1 有機碳之分佈 -------------------------------129
5-7-2 有機物之腐植化 -------------------------------130
5-7-3 銅、錳及鋅之化學型態 ----------------------133
5-7-4 銅、錳及鋅於腐植酸及黃酸之分佈 --------141
5-8有機物轉化之光譜分析 --------------------------------------143
5-8-1霍氏轉換紅外線光譜分析 -----------------------143
5-8-2 碳13-核磁共振光譜分析 ------------------------150
5-9 厭氧培育 -----------------------------------------------155
5-10 綜合討論-------------------------------------------------156
第六章 豬糞堆肥之應用:對土壤中重金屬及有機物化學特性之影響 ------------------------------------------------------------------158
6-1 土壤之物理化學性質-------------------------------------158
6-2 土壤中重金屬含量 -----------------------------------159
6-3 土壤中重金屬於不同萃取劑之萃出性 -------------160
6-4 土壤中重金屬之化學型態 --------------------------------164
6-5 豬糞堆肥對土壤中重金屬化學型態之影響 ------173
6-6 pH對土壤中重金屬及有機物溶解度之影響 -------180
6-7 合成酸雨對土壤中重金屬及有機物溶解度之影響-185
6-8 豬糞尿液有機廢水對土壤中重金屬溶解度之影響 196
6-9 植物攝取重金屬-----------------------------------------202
6-10 綜合討論 ---------------------------------------------------203
第七章 結論與建議 ------------------------------------------------------205
7-1 結論---------------------------------------------------205
7-2 建議---------------------------------------------------209
參考文獻 ----------------------------------------------------------211
附錄 -----------------------------------------------------------------------------230
表目錄
Table 2-1. Classification of methods for testing compost maturity. -----11
Table 2-2. Distribution of organic C from selected composts in humic fractions as percentage of total dry compost weight.---------------17
Table 2-3. Elemental composition (%) of humic acid preparations from selected composts, soils, and sludges. ---------------------------------18
Table 2-4. Functional group distribution of humic acid preparations from selected composts, soils, and sludges. --------------------------19
Table 2-5. Pollutant concentration limits (mg/kg dry weight) of compost and other wastes for agricultural use. -------------------25
Table 2-6. Hydrolysis, carbonate and chloride formation constants, pb, of metals.---------------------------------------------------------------33
Table 2-7. Complexation reactions and constants for metals with hydrous ferric oxide.------------------------------------------------------------36
Table 2-8. Solubility reactions and products for metallic hydroxides and carbonate.-------------------------------------------------------------39
Table 4-1. Gross physical and chemical properties of SSMS composts. -------------------------------------------------------------------------------77
Table 4-2. Macroelement composition (g/kg) of SSMS composts on an oven dry-weight basis.---------------------------------------------------79
Table 4-3. Trace element content (mg/kg dry weight) of SSMS composts collected on two occasions. --------------------------------------------81
Table 4-4. Extracted humic C (g/kg) by NaOH and its distribution in HA, FA and NHF as % of organic C. --------------------------------------83
Table 4-5. Extracted metals (mg/kg) by NaOH and their distribution in HA, FA and NHF fractions. --------------------------------------------85
Table 4-6. Cu, Mn, and Zn (mg/kg) associated with extractable forms in separated swine manure composts studied.----------------------88
Table 4-7. Matrix correlation (coefficient of correlation r ) of Cu, Mn, and Zn fractionations with some compost parameters. ---------90
Table 4-8. Cascade extraction organic C (mg/L) and metal (mg/kg) concentrations for SSMS compost samples. ------------------------93
Table 4-9. Characteristics of pig slurry liquid fraction. -------------------97
Table 4-10. Extracted metals (Cu, Mn, and Zn) by water and pig slurry liquid fraction(PSLF).--------------------------------------------97
Table 4-11. Total element content, water extractable and DTPA extractable element concentration of the SSMS compost used for plant uptake study.-----------------------------------------100
Table 4-12.Element concentrations in plant tissue.------------------------100
Table 5-1. Chemical properties and total elemental concentration of SSMS during the composting process (on a dry-weight basis). --109
Table 5-2. Kinetic parameter estimates for fresh biosolid decomposition using the simultaneous and sequential decomposition models where kr is the rapid fraction rate constant and ks is the slow fraction rate constant. ------------------------------------------------------------------111
Table 5-3. Matrix correlation (coefficient of correlation r) of total elemental concentration with some chemical properties during composting of separated swine manure. --------------------------114
Table 5-4. Chemical properties and composition of water extract (1:10 solid/water) of SSMS at various stages of the composting process. -----------------------------------------------------------------------------118
Table 5-5. Matrix correlation (coefficient of correlation r) of water extract properties and composition with bulk samples during composting of separated swine manure. -----------------------------------------124
Table 5-6. Humic substances content and humification index (HI), humification ratio (HR), and percentage of humic acid (HP) during SMSS composting. ----------------------------------------------------127
Table 5-7. Extracted metals (mg/kg) by NaOH and their distributions in HA, FA and NHF fractions during SSMS composting.------------128
Table 5-8. Distribution of compost C in the various fractions as a percentage of total compost C during the composting process. --130
Table 5-9. Extracted humic C and its distribution in FA and HA fractions. -----------------------------------------------------------------------------132
Table 5-10. Correlation coefficients (r) between parameters used for SSMS compost maturity indices. -------------------------------------133
Table 5-11. Cu, Mn, and Zn (mg/kg) associated with extractable forms during composting of separated swine manure.--------------------137
Table 5-12. Matrix correlation (coefficient of correlation r) of Cu, Mn, and Zn extractions with some composting parameters.-----------139
Table 5-13. Distribution of Cu, Mn, and Zn in FA and HA fractions of Na4P2O7 and NaOH extracts. ------------------------------------------143
Table 5-14. Distribution of C-containing groups during composting of SSMS as determined by CPMAS 13C-NMR (percent of total C). ------------------------------------------------------------------------------153
Table 5-15. Matrix correlation (coefficient of correlation r) of FTIR peak intensity ratios and 13C-NMR C-containing groups with some composting parameters.----------------------------------------155
Table 5-16. Total content and water-soluble fraction of element during SSMS anaerobic incubation (on a dry-weight basis).-------------156
Table 6-1. Characteristics of study soils from Kuan-Yin and Lu-Chu.-----------------------------------------------------------------------------------159
Table 6-2. Total metal contents in Kuan-Yin and Lu-Chu soils. ---------160
Table 6-3. Maximum allowable heavy metal concentrations (mg/kg) in agricultural soils. --------------------------------------------------------160
Table 6-4. Water, DTPA, and 0.1 M HCl extractable metals (mg/kg) from Kuan-Yin and Lu-Chu soils. ------------------------------------------163
Table 6-5. Classification of heavy metal concentrations (mg/kg) in soils in Taiwan. ----------------------------------------------------------------164
Table 6-6. Fe and Mn (mg/kg) associated with extractable forms in Kuan-Yin and Lu-Chu soils. -----------------------------------------------167
Table 6-7. Cd, Pb, Cu, Zn, Cr, and Ni (mg/kg) associated with extractable forms in Kuan-Yin and Lu-Chu soils. ---------------------------172
Table 6-8. Chemical properties of the SSMS compost amended to soils. -------------------------------------------------------------------------------174
Table 6-9. Cd, Pb, Cu, Zn, Cr, Ni, Fe, and Mn (mg/kg) associated with extractable forms in SSMS compost amended Kuan-Yin and Lu-Chu soils. ----------------------------------------------------------------178
Table 6-10. Cascade extraction organic C (mg L-1) and metal (mg kg-1) concentrations for Kuan-Yin and Lu-Chu soils. --------------------195
Table 6-11. Correlation coefficients of cascade extraction metal concentrations with extraction pH and organic C concentrations for Kuan-Yin and Lu-Chu soils. ------------------------------------------196
Table 6-12. Some chemical properties of pig urine, pig slurry liquid fraction, and secondary effluent used in this study. ----------------197
Table 6-13. Swine liquid waste extraction pH and organic C concentration (mg/L) for Kuan-Yin and Lu-Chu soils. -----------------------------199
Table 6-14. Extracted metals (mg/kg) by pig urine, PSLF, secondary effluent, and DI water for Kuan-Yin and Lu-Chu soils. -----------201
Table 6-15. Correlation coefficients of extraction metal concentrations with extraction pH, organic C anc Cl- concentrations for Kuan-Yin and Lu-Chu soils. -------------------------------------------------------201
Table 6-16. Element concentrations in plant tissue for Kuan-Yin soil. -203
圖目錄
Fig. 2-1. Piggery waste treatment process. ------------------------------------7
Fig. 2-2. CPMAS 13C-NMR spectra of (a) whole soil, (b) HA, (c) FA, and (d) humin from the surface soil layor of a spruce forest.------------20
Fig. 2-3. Adsorption of Cd, Cr, Co, Cu, Pb, Ni, V, and Zn onto hydrous ferric oxide. ---------------------------------------------------------------36
Fig. 2-4. Complexation of Cd and Cu with humic material. --------------37
Fig. 2-5. The solubility of (a) metallic hydroxides and (b) carbonates.--39
Fig. 3-1. Experimental flowchart of this research. ---------------------52
Fig. 3-2. Scheme for sequential extraction and fractionation of trace elements and organic C in composts. ----------------------------------65
Fig. 4-1. Distribution of (a) Cu, (b) Zn, and (c) Mn in the various fractions obtained from composts by sequential extraction. --------89
Fig. 4-2 pH dependence of metals extraction and organic C dissolution for SSMS compost. ------------------------------------------------------95
Fig. 4-3. Comparison of the percentage of an element and organic C (excluded in the sequential extraction) extracted in the (a) sequential extraction exchangeable fraction, first SRC extraction, and neutral pH levels extraction and (b) the sequential extraction organic fraction, HS extraction, and pH 11.44 extraction for SSMS composts.------------------------------------------102
Fig. 5-1. Compost and ambient temperature during SSMS composting. -----------------------------------------------------------------------------105
Fig. 5-2. The C/N ratio and ash content during SSMS composting. -------------------------------------------------------------------------------------106
Fig. 5-3. Correlation between organic matter (equivalent to ignition loss) and organic C during SSMS composting. ---------------------------107
Fig. 5-4. Percent decomposition vs. time for SSMS biosolid. Predictions from the simultaneous decomposition model. ----------------------111
Fig. 5-5. Natural logarithm of percent C remaining (100%-% Decomposition) vs. time for SSMS biosolid. Predictions from the sequential decomposition model. -------------------------------------112
Fig. 5-6. Variation of Cu, Mn, and Zn content during SSMS composting. -----------------------------------------------------------------------------113
Fig. 5-7. Water-soluble organic C concentrations and water-soluble fractions of Cu, Mn, and Zn during SSMS composting. --------116
Fig. 5-8 Correlation between water-soluble organic C and leaching elements during SSMS composting. --------------------------------120
Fig. 5-9. Electrical conductivity and NO3- concentration during SSMS composting (measured in a 1:10 solid/water extract). -------------122
Fig. 5-10. Relative content of humic acid (HA), fulvic acid (FA), nonhumic fraction (NHF), and humic substances (HS) as a percentage of compost organic matter during SSMS composting. --------------------------------------------------------------------126
Fig. 5-11. Distribution of (a) Cu, (b) Mn, and (c) Zn in the various fractions by sequential extraction. ----------------------------------138
Fig. 5-12. Distribution of (a) Cu, (b) Mn, and (c) Zn in the various fractions during SSMS composting. -------------------------------141
Fig. 5-13. FTIR spectra of bulk SSMS compost at six stages of composting (raw, 7, 18, 33, 80, and 122 d). ----------------------145
Fig. 5-14. FTIR peak intensity ratios (1650/2930, 1650/2850, and 1650/1050/cm-1) vs. C/N ratio during SSMS composting. ------147
Fig. 5-15. FTIR spectra of residual ash at three stages of composting (raw, 33, and 122 d). --------------------------------------------------------148
Fig. 5-16. FTIR spectra of ash-free organic matter in SSMS compost at three stages of composting (raw, 33, and 122 d). Ash spectra were subtracted from those of the bulk materials. ---------------------149
Fig. 5-17. CPMAS 13C-NMR spectra of SSMS compost samples at six stages of composting (raw, 7, 18, 33, 80, and 122 d). -----------151
Fig. 6-1. Partitioning of Fe and Mn in Kuan-Yin (K-Y) and Lu-Chu (L-C) soils. ----------------------------------------------------------------167
Fig. 6-2. Partitioning of Cd, Pb, Cu, Zn, Cr, and Ni in (a) Kuan-Yin and (b) Lu-Chu soils. ------------------------------------------------------173
Fig. 6-3. Partitioning of Cd, Pb, Cu, Zn, Cr, Ni, Fe, and Mn in compost-amended (a) Kuan-Yin (b) Lu-Chu soils. --------------------------179
Fig. 6-4. pH dependence of soil organic C extracted for Kuan-Yin and Lu-Chu soils. ----------------------------------------------------------182
Fig. 6-5. pH dependence of (a) Cd, (b) Pb, (c) Cu, (d) Zn, (e) Cr, and (f) Ni extraction for Kuan-Yin and Lu-Chu soils. --------------------184
Fig. 6-6. Variation of extract pH during rainwater cascade extraction for Kuan-Yin and Lu-Chu soils. ----------------------------------------186
Fig 6-7. Dissolution of soil organic C during rainwater cascade extraction for Kuan-Yin and Lu-Chu soils. -----------------------188
Fig. 6-8. Leaching of (a) Cd, (b) Pb, (c) Cu, (d) Zn, (e) Cr, and (f) Ni during rainwater cascade extraction for Kuna-Yin and Lu-Chu soils. --------------------------------------------------------------------195
參考文獻
REFERENCES
台灣農業年報,台灣省政府農林廳,1995 。
行政院農業委員會,毛豬產銷與環保研究報告,1992。
行政院農業委員會,肥料品目及規格-有機質肥料(五)類,1991。
楊盛行,鐘仁賜,魏嘉碧, 「蔬菜廢棄物及畜產廢棄物之重金屬元素含量」,第四屆土壤污染防治研討會論文集,台北市,177-189,1993。
連深,李豔琪, 「有機質肥料之重金屬含量及肥料規格之有關規範」,土壤與肥料污染研討會論文集,158-173,1994。
王隆煇,李松伍,黃啟民,張順榮,陳文崇,「豬糞尿液二級處理及高速腐熟堆肥製造之研究」,台灣糖業研究所81/82年期研究試驗報告,65-73,1993。
劉文徹,謝德上,陳芳,李松伍, 「養豬畜殖放流水對土壤重金屬累積與甘蔗之影響」,台灣糖業研究所研究彙報,152, 1-17,1996。
陳尊賢,駱尚廉,吳先琪, 「桃園鎘污染農業土壤之綜合性再分析與評估」,行政院科技顧問組委託研究計畫報告,1994。
蕭炳欽,「下水污泥餅之化學處理及其重金屬特性之分析」,博士論文,台大環工所,1997。
Adriano, D. C., Trace elements in the terrestrial environment, Springer-Verlag New York, New York, 1986.
Albonetti, S. G., and Massari, G., "Microbiological aspects of a municipal waste composting system", Eur. J. Appl. Microbiol. Biotechnol., 7, 91-98, 1979.
Alloway, B.J., Heavy metals in soils, 2nd ed. Blackie Academic & Professional, London, 1995.
Alloway, B. J., and Jackson, A. P., "The behavior of heavy metals in sewage sludge-amended soils", Sci. Total Environ., 100, 151-176, 1991.
Alexander, M., Introduction to soil microbiology, 2nd ed. John Wiley & Sons, New York, 1977.
Anid, P. J., "Evaluating maturity and metal transfer of MSW compost", BioCycle, 27, 46-47, 1986.
Arian, D. S., and Bell, J. H., "Resource recovery through composting- a sleeping giant", in Proc. 1980. Am. Soc. Mech. Eng., New York, NY, 121-129, 1980.
Baccini, P., and Suter, U., "MELIMEX, an experimental heavy metal pollution study: Chemical speciation and Biological availability of copper in lake water", Schweiz, Z. Hydrol., 4, 1/2, 291-314, 1979.
Baes, A. U., and Bloom, P. R., "Diffuse reflectance and transmission fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids", Soil Sci. Soc. Am. J., 53, 695-700, 1989.
Baghdady, N. H., and Sippola, J., "Efficiency of aqua regia in extracting Cd, Cr, Hg, Ni and Pb of soils of different origins", Ann. Agric. Fenn., 22, 240-244, 1983.
Baham, J., Ball, N. B., and Sposito, G., "Gel filtration studies of trace metal-fulvic acid solutions extracted from sewage sludges", J. Environ. Qual., 7, 181-188, 1978.
Barber, R. S., Braude, R., and Mitchell, K. G., "Further studies on antibiotic, copper, and zinc supplements for growing pigs", Br. J. Nutr., 14, 409-415, 1960.
Bernal, M. P., Roig, A., Lax, A., and Navarro, A. F., "Effects of the application of pig slurry on some physico-chemical and physical properties of calcareous soils", Bioresource Technol., 42, 233-239, 1992.
Berti, W. R., and Jacobs, L. W., "Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge applications", J. Environ. Qual., 25, 1025-1032, 1996.
Boekhold, A.E., Temminghoff, E.J.M., and van der Zee, S.E.A.T.M., "Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil", Soil Sci., 44, 85-96, 1993.
Bourg, A. C. M., Metals in aquatic and terrestrial systems: sorption, speciation and mobilization, Bureau de Recherches Geologiques et Minieres, Service Geologique National, Note Tech. 86/20, Orleans, France, 1986.
Boyd, S A., and Sommers, L. E., "Humic and fulvic acid fractions from sewage sludges and sludge-amended soils", in Humic substances in soil and crop sciences: Selected readings, P. MacCarthy et al. (ed.), ASA, Madison, WI, 203-220, 1990.
Boyle, M., and. Fuller, W. H., "Effect of municipal solid waste leachate composition on zinc migration through soils", J. Environ. Qual., 16, 357-360, 1987.
Brady, N. C., The nature and properties of soils, 8th ed. Macmillan Pub. Co., New York, 1974.
Braude, R., "Copper as a growth stimulant in pig feeding (cuprum pro pecunia) ", World Rev. Anim Prod., 3, 69-81, 1967.
Buffle, J., Complexation reactions in aquatic systems: an analytical approach, Ellis Horwood Publ., Chichester, England, 1988.
Canarutto, S., Petruzzelli, G., Lubrano, L., and Guidi, G. V., "How composting affects heavy metal content", BioCycle, 32, 48-50, 1991.
Castilho, P. D., Chardon, W. J., and Salomons, W., "Influence of cattle-manure slurry application on the solubility of cadmium, copper, and zinc in a manured acidic, loamy-sand soil", J. Environ. Qual., 22, 689-697, 1993.
Chaney, R.L., and Ryan, J. A., "Heavy metals and toxic organic pollutants in MSW-composts: Research results on phytoavailability, bioavailability, etc. ", in Science and engineering of composting: Design, environmental, microbiological and utilization aspects, H.A.J. Hoitink and H.M. Keener (ed.), Ohio State University, Columbus, 451-506, 1993.
Chang, A. C., Page, A. L., Warneke, J. E., and Grgurevic, E., "Sequential extraction of soil heavy metals following a sludge application", J. Environ. Qual., 13, 33-38, 1984.
Chang, A. C., Granato, T. C., and Page, A. L., "A methodology for establishing phytotoxicity criteria for chromium, copper, nickel, and zinc in agricultrual land applications of municipal sewage sludges", J. Environ. Qual., 21, 521-536,1992.
Chang, C., Sommerfeldt, T. G., and Entz, T., "Soil chemistry after eleven annual applications of cattle feedlot manure", J. Environ. Qual., 20, 475-480, 1991.
Chanyasak, V., Katayama, A., Hirai, M. F., Mori, S., and Kubota, H., "Effects of compost maturity on growth of komatsuna (Brassica rapa, var. pervidis) in Neubauer''s pot: II. Growth inhibitory factors and assessment of degree of maturity by org-C/org-N ratio of water extracts", Soil Sci. Plant Nutr., 29, 251-259, 1983.
Chao, T. T., "Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride", Soil Sci. Soc. Am. Proc., 36, 764-768, 1972.
Chao, T. T., and Zhou, L., "Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments", Soil Sci. Soc. Am. J., 47, 225-232, 1983.
Chapman, H. D., "Cation-exchange Capacity", in Methods of soil analysis, Part 2: Chemical and Microbiological Properties, C. A. Black (ed.), Am. Soc. Agron., Madison, Wisconsin, 891-900, 1965.
Chardon, W. J., Oenema, O., Castilho, P. D., Vriesema, R., Japenga, J., and Blaauw, D., "Organic phosphorus in solutions and leachates from soils treated with animal slurries", J. Environ. Qual., 26, 372-378, 1997.
Chefetz, B., Adani, F., Genevini, P., Tambone, F., Hadar, Y., and Chen, Y., "Humic acid transformation during composting of municipal solid waste", J. Environ. Qual., 27, 794-800, 1998.
Chefetz, B., Hatcher, P. G., Hadar, Y., and Chen, Y., "Chemical and biological characterization of organic matter during composting of municipal solid waste", J. Environ. Qual., 25, 776-785, 1996.
Chen, Y., and Inbar, Y., "Chemical and spectroscopic analysis of organic matter transformations during composting in relation to compost maturity", in Science and engineering of composting: Design, environmental, microbiological and utilization aspects, H. A. J. Hoitink and H. M. Keener (ed.), Renaissance Publ., Worthington, OH, 551-600, 1993.
Chen, Y., Inbar, Y., Hadar, Y., and Malcolm, R. L., "Chemical properties and solid-state CPMAS 13C-NMR of composted organic matter", Sci. Total Environ., 81/82, 201-208, 1989.
Chen, Z. S., "Cadmium and lead contamination of soils near plastic stabilizing materials producing plants in Northern Taiwan", Water, Air, and Soil Pollution, 57/58, 745-754, 1991.
Ciavatta, C., Govi, M., Pasotti, L., and Sequi, P., "Changes in organic matter during stabilization of compost from municipal solid waste", Bioresource Technol., 43, 141-145, 1993.
Chlopecka, A., Bacon, J. R., Wilson, M. J., and Kay, J., "Forms of cadmium, lead, and zinc in contaminated soils from southwest Poland", J. Environ. Qual., 25, 69-79, 1996.
Clevenger, T. E., and Mullins, W., "The toxic extraction procedure for hazardous waste", in Trace substances in environmental health XVI., Uni. Of Missouri, Columbia, MO, 77-82, 1982.
Cottenie, A., "Sludge treatment and disposal in relation to heavy metals", in Int. Conf. Heavy Metal Environ., Amsterdam. September 1981, Commission of the European Communities, Amsterdam, the Netherlands, 167-175, 1981.
Davies, B. E., "Trace element pollution", in Applied soil trace elements, B. E. Davies. (ed.), Wiley & Sons, New York, 287-351, 1980.
DeVleeschauwer, D., Verdonck, O., and Assche, P. V., "Phytotoxicity of refuse compost", BioCycle, 22, 44-46, 1981.
De Wit, J.C.M., Proton and metal ion binding to humic substances, Ph.D. dissertation, Wageningen Agricultural University, Wageningen, The Netherlands, 1992.
Del Castilho, P., and Dalenberg, J. W., "Dissolved organic matter, cadmium, copper and zinc in pig slurry-and soil solution-size exclusion chromatography fractions", Intern. J. Environ. Anal. Chem., 50, 91-107, 1993.
Del Castilho, P., Chardon, W. J., and Salomons, W., "Influence of cattle-manure slurry application on the solubility of cadmium, copper, and zinc in a manured acidic, loamy-sand soil", J. Environ. Qual., 22, 689-697, 1993.
Domergue, F. L., and Vedy, J. C., "Mobility of heavy metals in soil profiles", Intern. J. Environ. Anal. Chem., 46, 13-23, 1992.
Dudley, L. M., McNeal, B. L., and Baham, J. E., "Time-dependent changes in soluble organics, copper, nickel, and zinc from sludge amended soils", J. Environ. Qual., 15, 188-192, 1986.
Eghball, B., Power, J. F., Gilley, J. E., and Doran, J. W., "Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure", J. Environ. Qual., 26, 189-193, 1997.
Elsokkary, I. H., and Lag, J., "Distribution of different fractions of Cd, Pb, Zn and Cu in industrially polluted and non-polluted soils of Odda Region, Norway", Acta Agric. Scan., 28, 262-268, 1978.
Emmerich, W. E., Lund, L. J., Page, A. L., and Chang, A. C., "Solid phase forms of heavy metals in sewage sludge-treated soils (cadmium, copper, nickel, zinc) ", J. Environ. Qual., 11, 178-181, 1982.
Erwin, J. M. T., van der Zee, S. E. A. T. M., and Keizer, M. G., "The influence of pH on the desorption and speciation of copper in a sandy soil", Soil Science, 158, 398-408, 1994.
Evans, L. J., Spiers, G. A., and Zhao, G., "Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils", Intern. J. Environ. Anal. Chem., 59, 291-302, 1995.
FAC, Methoden fur Bodenuntersuchungen. Schriftenreihe der FAC Nr 5. Eidg. Forschungsanstalt fur Agrikulturchemie und Umwelthygiene (FAC), Liebefeld-Bern, Switzerland, 1989.
Federal Register, "Hazardous waste management system; identification and listing of hazardous waste; toxicity characteristic revisions", Fed. Regist., 55, 11798-11865, 1990.
Federal Register, "Standards for the use or disposal of sewage sludge; final rules", Fed. Regist., 58, 9248-9415, 1993.
Fergusson, J. E., Hayes, R. W., Tan, S. Y., and Sim, H. T., "Heavy metal pollution by traffic in Christchurch, New Zealand: lead and cadmium content of dust, soil and plant samples", N. Z. J. Sci., 23, 293-310, 1980.
Finstein, M. S., and Miller, F. C., "Principles of composting leading to maximization of decomposition rate, odor control, and cost effectiveness", in Composting of agricultural and other wastes, J. K. R. Gasser (ed.), Elsevier Applied Science Publisher, New York, 13-26, 1985.
Flick, D. F., Kraybill, H. F., and Dimitroff, J. M., "Toxic effects of cadmium: A review", Environ. Res., 4, 71-85, 1971.
Frampton, J. A., "The association of cobalt, nickel, copper, and zinc with iron and manganese oxides of soils", Ph.D. diss. Univ. California, Davis, CA. (Diss. Abstr. 83-26072), 1983.
Fraser, J. L., and Lum, K. R., "Availability of elements of environmental importance in incinerated sludge ash", Environ. Sci. Technol., 17, 52-54, 1983.
Garcia, C., Hernandez, T., and Costa, F., "Changes in carbon fractions during composting and maturation of organic wastes", Environ. Manag., 15, 433-439, 1991.
Garcia, C., Hernandez, T., Costa, F., and Pascual, J. A., "Phytotoxicity due to the agricultural use of urban wastes. Germination experiments", J. Sci. Food Agric., 59, 313-319, 1992.
Garcia, C., Hernandez, T., Costa, F., and del Rio, J. C., "Study of the lipidic and humic fractions from organic waste before and after the composting process", Sci. Total Environ., 81, 551-560, 1989.
Gee, G. W., and Bauder, J. W., "Particle-size analysis", In A. Klute et al. (Editors). Methods of Soil Analysis, Part I. Physical and mineralogical methods, Second edition, Madison, WI, U.S.A., Soil Science Society of America Monograph 9, 383-412, 1986.
Genevini, P. L., Adani, F., and Villa, C., "Dairy cattle slurry and rice hull co-composting", In M. de Bertoldi et al. (ed.) The science of composting, Blackie Academic & Professional, London, 567-576, 1996.
Gerasimowicz, W. V., and Byler, D. M., "Cabon-13 CPMAS NMR and FTIR spectroscopic studies of humic acids", Soil Sci., 139, 270-278, 1985.
Gibson, M. J., and Farmer, J. G., "A survey of trace metal contamination in Glasgow urban soils", In Proc. 4th Int. Conf. on Heavy Metals in the Environment, 2, 1141-1144, 1983.
Gibson, M. J., and Farmer, J. G., "Multi-step sequential chemical extraction of heavy metals from urban soils", Environ. Pollut. Ser. B, 11, 117-135, 1986.
Gilmour, J. T., and Gilmour, C. M., "A simulation model for sludge decomposition in soil", J. Environ. Qual., 9, 194-199, 1980.
Gilmour, J. T., Roman, F., and Clark, M. D., "Decomposition of biosolids in a disposal site soil", J. Environ. Qual., 25, 1083-1086, 1996.
Gilmour, J. T., Clark, M. D., and Daniel, S. M., "Predicting long-term decomposition of biosolids with a seven-day test", J. Environ. Qual., 25, 766-770, 1996.
Giusquiani, P. L., Gigliotti, G., and Businelli, D., "Mobility of heavy metals in urban waste-amended soils", J. Environ. Qual., 21, 330-335, 1992.
Giusquiani, P. L., Concezzi, L., Businelli, M., and Macchioni, A., "Fate of pig sludge liquid fraction in calcareous soil: agricultural and environmental implications", J. Environ. Qual., 27, 364-371, 1998.
Gonzalez-Vila, F. J., Saiz-Jimenez, C., and Martin, F., "Identification of free organic chemicals found in composted municipal refuse", J. Environ. Qual., 11, 251-254, 1982.
Gonzalez-Vila, F. J., and Martin, F., "Chemical structural characteristics of humic acids extracted from composted municipal refuse", Agric. Ecosyst. Environ., 14, 267-278, 1985.
Gupta, S K., and Chen, K. Y., "Partitioning of trace metals in selective chemical fractions of nearshore sediments", Environ. Lett., 10, 129-158, 1975.
Hadas, A., and Portnoy, R., "Nitrogen and carbon mineralization rates of composted manures incubated in soil", J. Environ. Qual., 23, 1184-1189, 1994.
Hansen, R. C., Keener, H. M., Marugg, C., Dick, W.A., and Hoitink, H. A. J., "Composting of poultry manure", In H.A.J. Hoitink and H.M. Keener (ed.) Science and engineering of composting: Design, envirnmental, microbiological and utilization aspects. Renaissance Publ., Worthington, OH., 131-153, 1993.
Harada, Y., and Inoko, A., "Cation exchange properties of soil organic matter: I. Effects of conditions for the measurement on cation exchange capacity values of humic acid preparation", Soil Sci. Plant Nutr., 21, 361-369, 1975.
Harada, Y., Inoko, A., Tadaki, M., and Izadaki, T., "Maturing process of city refuse compost during piling", Soil Sci. Plant Nutr., 27, 357-364, 1981.
Hatcher, P. A., Maciel, G. E., and Dennis, L. W., "Aliphatic structure of humic acids: A clue to their origin", Org. Geochem., 3, 43-48, 1981a.
Hatcher, P. G., Schnitzer, M., Dennis, L. W., and Maciel, G. E., "Aromaticity of humic substances in soil", Soil Sci. Soc. Am. J., 45, 1089-1094, 1981b.
He, X. T., Traina, S. J., and Logan, T. J., "Chemical properties of municipal solid waste compost", J. Environ. Qual., 21, 318-329, 1992.
He, X.T., Logan, T. J., and Traina, S. J., "Physical and chemical characteristics of selected U.S. municipal solid waste composts", J. Environ. Qual., 24, 543-552, 1995.
Henry, C. L., and Wescott, H., "Assessing the toxicity and uptake of trace metals by plants grown in compost-amended soil", In Proc. Composting Council''s 3rd Natl. Conf.: Technical Symp., Washington, DC., 11-13 Nov. 1992, Composting Council, Alexandria, VA., 5-14, 1992.
Hertz, J., Angehrn-Bettinazzi, C., and Stockli, H., "Distribution of heavy metals in various liltter horizons and forest soils", Intern. J. Environ. Anal. Chem., 39, 91-99, 1990.
Hesterberg, D., Bril, J., and Castilho, P. D., "Thermodynamic modeling of zinc, cadmium, and copper solubilities in a manured, acidic loamy-sand topsoil", J. Environ. Qual., 22, 681-688, 1993.
Hickey, M. G., and Kittrick, J. A., "Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals", J. Environ. Qual., 13, 372-376, 1984.
Hirai, M.F., Chanyasak, V., and Kubota, H., "A standard measurement for compost maturity", Biocycle, 24, 54-56, 1983.
Hoitink, H. A. J., and Fahy, P. C., "Basis for the control of soilborne plant pathogens with composts", Ann. Rev. Phytopathol., 24, 93-114, 1986.
Holtzclaw, K. M., Keech, D. A., Page, A. L., Sposito, G., Ganje, T. J., and Ball, N. B., "Trace metal distributions among the humic acid, the fulvic acid, and precipitate fractions extracted with NaOH from sewage sludges", J. Environ. Qual., 7, 124-127, 1978.
Hsiau, P. C., and Lo, S. L., "Fractionation and leachability of Cu in lime-treated sewage sludge", Wat. Res., 32, 1103-1108, 1998.
Huheey, J.E., Inorganic chemistry. Harper and Row, New York, 1978.
Iannotti, D. A., Grebus, M. E., Toth, B. L., Madden, L. V., and Hoitink, H. A. J., "Oxygen respirometry to assess stability and maturity of composted municipal solid waste", J. Environ. Qual., 23, 1177-1183, 1994.
Ihnat, M., and Fernandes, L., "Trace elemental characterization of composted poultry manure", Bioresource Technol., 57, 143-156, 1996.
Inbar, Y., Chen, Y., and Hadar, Y., "Solid state carbon-13 nuclear magnetic resonance infrared spectroscopy of composted organic matter", Soil Sci. Am. J., 53, 1695-1701, 1989.
Inbar, Y., Chen, Y., and Hadar, Y., "Humic substances formed during the composting of organic matter", Soil Sci. Soc. Am. J., 54, 1316-1323, 1990a.
Inbar, Y., Chen, Y., Hadar, Y., and Hoitink, H. A. J., "New approaches to compost maturity", BioCycle, 31(12), 64-68, 1990b.
Inbar, Y., Chen, Y., and Hadar, Y., "Carbon-13 CPMAS NMR and FTIR spectroscopic analysis of organic matter transformations during composting of solid wastes from wineries", Soil Sci., 152, 272-282, 1991.
Inbar, Y., Hadar, Y., and Chen, Y., "Recycling of cattle manure: The composting process and characterization of maturity", J. Environ. Qual., 22, 857-863, 1993.
Jackson, M. L., Soil chemical analysis, Prentice Hall, Englewood, Cliffs, NJ., 1958.
Jacob, L. W., "Potential hazards when using organic materials as fertilizers for crop production", Food and Fertilizer Technology Center of Asia and Pacific Regions, Extension Bulletin, No. 313, 1990.
Jann, G. J., Howard, D. H., and Salle, A. J., "Method for determination of completion of composting", Appl. Microbiol., 7, 271-275, 1959.
Japenga, J., Dalenberg, J.W., Wiersma, D., Scheltens, S.D., Hesterberg, D., and Salomons, W., "Effect of liquid animal manure application on the solubilization of heavy metals from soil", Inter. J. Environ. Anal. Chem., 46, 25-39, 1992.
Japenga, J., and Harmsen, K., "Determination of mass balances and ionic balances in animal manure", Neth. J. Agric. Sci., 38, 353-367, 1990.
James, D. W., Kotuby-Amacher, J., Anderson, G. L., and Huber, D. A., "Phosphorus mobility in calcareous soils under heavy manuring", J. Environ. Qual., 25, 770-775, 1996.
Jimenez, E. I., and Garcia, V. P., "Determination of maturity indices for city refuse composts", Agric. Ecosyst. Environ., 38, 331-343, 1992.
Jing, J., and Logan, T. J., "Effects of sewage sludge cadmium concentration on chemical extractability and plant uptake", J. Environ. Qual., 21, 73-81, 1992.
Jones, J. B., and Case, V. W., "Sampling, handling, and analyzing plant tissue samples", p. 389-427. In R. L. Westerman (ed.), Soil testing and plant analysis, 3rd ed., SSSA Book Series 3, SSSA, Madison, WI., 1990.
Keller, C., and Vedy, J. C., "Distribution of copper and cadmium fractions in two forest soils", J. Environ. Qual., 23, 987-999, 1994.
King, L.D., Burns, J.C., and Westerman, P. W., "Long-term swine lagoon effluent applications on ''Coastal'' bermudagrass: I. Effect on nutrient accumulation in soil", J. Environ. Qual., 19, 756-760, 1990.
Klute, A., (Editors), Methods of soil analysis. Part I. Physical and mineralogical methods, 2nd. ed., p. 493-543, The American Society of Agronomy, WI., 1986.
Kodama, H., (ed.), "Infrared spectra of minerals, reference guide to identification and characterization of minerals for the study of soils", Ministery of Supply and Services Canada, Ottawa, Canada, 1985.
Kogel-Knabner, I., Hatcher, P. G., and Zech, W., "Chemical structural studies of forest soil humic acids: Aromatic carbon fraction", Soil Sci. Soc. Am. J., 55, 241-247, 1991.
Kotuby-Amacher, J., and Gambrell, R. P., "Factors affecting trace metal mobility in subsurface soils", p.1-7, USEPA Rep. 600/52-88/306, Robert S. Kerr Environ. Res. Lab., Ada, OK., 1988.
Krosshavn, M., Kogel-Knabner, I., Southon, T. E., and Steinnes, E., "The influence of humus fractionation on the chemical composition of soil organic matter studied by solid-state 13C NMR", J. Soil Sci., 43, 473-483, 1992.
Kuo, S., Heilman, P. E., and Baker, A. S., "Distribution and forms of copper, zinc, cadmium, iron, & manganese in soils near a copper smelter", Soil Sci., 135, 101-109, 1983.
Lake, D. L., Kirk, P. W. W., and Lester, J. N., "Fractionation, characterization, and speciation of heavy metals in sewage sludge and sludge-amended soils: A review", J. Environ. Qual., 13, 175-183, 1984.
Lamos, L., Hernandez, L. M., and Gonzalez, M. J., "Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana National Park", J. Environ. Qual., 23, 50-57, 1994.
Lamy, I., Bourgeois, S., and Bermond, A., "Soil cadmium mobility as a consequence of sewage sludge disposal", J. Environ. Qual., 22, 731-737, 1993.
Leidmann, P., Fischer, K., Bieniek, D., and Kettrup, A., "Chemical characterization of silage effluents and their influence on soil bound heavy metals", Intern. J. Environ. Anal. Chem., 59, 303-316, 1995.
Leita, L., and De Nobili, M., "Water-soluble fractions of heavy metals during composting of municipal municipal solid waste", J. Environ. Qual., 20, 73-78, 1991.
Lerch, R. N., Barbarick, K. A., Sommers, L. E., and Westfall, D. G., "Sewage Sludge proteins as labile carbon and nitrogen sources", Soil Sci. Soc. Am. J., 56, 1470-1476, 1992.
L''Herroux, L., Le Roux, S., Appriou, P., and Martinez, J., "Behaviour of metals following intensive pig slurry applications to a natural field treatment process in Brittany (France) ", Environ. Pollut., 97, 119-130, 1997.
Li, Z., and Shuman, L. M., "Extractability of zinc, cadmium, and nickel in soils amended with EDTA", Soil Sci., 161, 226-232, 1996.
Lindsay, W. L., Chemical equilibria in soils, John Wiley & Sons, New York, 1979.
Lindsay, W. L., "Inorganic equilibria affecting micronutrients in soils", p.89-112, In J. J. Mortvedt et al. (ed.), Micronutrients in agriculture, 2nd ed. SSSA Book Ser. 4, SSSA, Madison, WI., 1991.
Lindsay, W. L., and Norvell, W. A., "Development of a DTPA soil test for zinc, iron, manganese, and copper", Soil Sci. Soc. Am. J., 42, 421-428, 1978.
Lisk, D. J., Secor, C. L., Rutzke, M., and Kuntz, T., "Elemental composition of municipal refuse ashes and their aqueous extracts from 18 incinerators", Bull. Environ. Contam. Toxicol., 42, 534-539, 1989.
Lovgren, L., and Sjoberg, S., "Equilibrium approaches to natural water systems -- 7. Complexation reactions of copper (II), cadmium (II) and mercury (II) with dissolved organic matter in a concentrated bog-water", Wat. Res., 23, 327-332, 1989.
Luo, Y. M., and Christie, P., "Bioavailability of copper and zinc in soils treated with alkaline stabilized sewage sludges", J. Environ. Qual., 27, 335-342, 1998.
MacNicol, R.D., and Beckett, P. H. T., "The distribution of heavy metals between the principal components of digested sewage sludge", Water Res., 23, 199-206, 1989.
Malcolm, R. L., "Applications of solid-state 13C-NMR to geochemical studies", In M.H.B. Hayes et al. (ed.), Humic substances in soil, sediment, and water: II. In search of structure, John Wiley, New York, 1989.
Ma, L. Q., Tan, F., and Harris, W. G., "Concentrations and distributions of eleven metals in Florida soils", J. Environ. Qual., 26, 769-775, 1997.
Ma, L. Q., and Rao, G. N., "Chemical fractionation of cadmium copper, nickel, and zinc in contaminated soils", J. Environ. Qual., 26, 259-264, 1997a.
Ma, L. Q., and Rao, G. N., "Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils", J. Environ. Qual., 26, 788-794, 1997b.
Martins, O., and Dewes, T., "Loss of nitrogenous compounds during composting of animal wastes", Bioresource Technol., 42, 103-111, 1992.
McBride, M. B., "Reactions controlling heavy metal solubility in soils", Adv. Soil Sci., 10, 1-56, 1989.
McBride, M. B., "Soluble trace metals in alkaline stabilized sludge products", J. Environ. Qual., 27, 578-584, 1998.
McLaren, R. G., and Crawford, D. V., "Studies on soil copper: I. The fractionation of copper in soil", J. Soil Sci., 24, 173-181, 1973.
McLean, E. O., "Soil pH and lime requirement", p. 199-224, In A. L. Page et al. (ed.), Methods of soil analysis, Part 2, 2nd ed., ASA and SSSA, Madison, WI., 1982.
Meeus-Verdinne, K., Scokart, P. O., and De Borger, R., "Evaluation des risques pour l''environnement provenant des metaux lourds contenus dans les dechets animaux", Revue de l''Agriculture, 4, 801-817, 1986.
Mermut, A. R., Jain, J. C., Song, L., Kerrich, R., Kozak, L., and Jana, S., "Trace element concentrations of selected soils and fertilizers in Saskatchewan, Canada", J. Environ. Qual., 25, 845-853, 1996.
Miller, W. P., Martens, D. C., and Zelazny L. W., "Effect of sequence in extraction of trace metals from soils", Soil Sci. Soc. Am. J., 50, 598-601, 1986.
Miller, W. P., Martens, D. C., Zelazny, L. W., and Kornegay, E. T., "Forms of solid phase copper in copper-enriched swine manure", J. Environ. Qual., 15, 69-72, 1986.
Miller, W. P., and McFee, W. W., "Distribution of cadmium, zinc, copper, and lead in soils of industrial northwestern Indiana", J. Environ. Qual., 12, 29-33, 1983.
Mitchell, C. C., Windham, S. T., Nelson, D. B., and Baltikauski, M. N., "Effects of long-term litter application on coastal plain soils", p. 383-390, In J. P. Blake et al. (ed.), Proc. 1992 Naiotional Poultry Waste Management Symposium Committee, Birmingham, AL., 6-8 Oct. 1992, Auburn Univ. Press, Auburn, AL., 1992.
Mullins, G. L., Martens, D. C., Miller, W. P., Kornegay, E. T., and Hallock, D. L., "Copper availability, form, and mobility in soils from three annual copper-enriched hog manure applications", J. Environ. Qual., 11, 316-320, 1982.
Neal, R. H. and Sposito, G., "Effects of soluble organic matter and sewage sludge amendments on cadmium sorption by soils at low cadmium concentrations", Soil Sci., 142, 164-172, 1986.
Nederlof, M., Analysis of binding hetrogeneity, Ph.D. dissertation, Wageningen Agricultural University, Wageningen, The Netherlands, 1992.
Nelson, D. W., and Sommers, L. E., "Total carbon, organic carbon, and organic matter", p. 539-579, In A L. Page et al. (ed.), Methods of soil analysis. Part 2., 2nd ed., ASA and SSSA, Madison, WI., 1982.
Nelson, J. L., Boawn, L. C., and Viets, F. G., "A method for assessing zinc status of soils using acid-extractable zinc and "titratable alkalinity" values", Soil Sci., 88, 275-283, 1959.
Niemeyer, J., Chen, Y., and Bollag, J. M., "Characterization of humic-acids, compost, and peat by diffuse reflectance fourier-transform infrared spectroscopy", Soil Sci. Soc. Am. J., 56, 135-140, 1992.
Nienaber, J. A., and Ferguson, R. B., "Nitrate concentration in the soil profile beneath compost areas", p. 233-237, In D. E. Storm and K.G. Casey (ed.), Proc. of the Great Plains Animal Wastes Conf. on Confined Animal Production and Water Quality, Denver, CO. 19-21 Oct. 1994, National Cattlemen''s Assoc., Englewood, CO., 1994.
Payne, G. G., Martens, D. C., Kornegay, E. T., and Lindemann, M. D., "Availability and form of copper in three soils following eight annual applications of copper-enriched swine manure", J. Environ. Qual., 17, 740-746, 1988.
Petruzzelli, G., Guidi, G., and Lubrano, L., "Chromatographic fractionation of heavy metals bound to organic matter of two Italian composts", Environ. Technol. Lett., 1, 201-208, 1980.
Petruzzelli, G., Szymura, I., Lubrano, L., and Pezzarossa, B., "Chemical speciation of heavy metals in different size fractions of compost from solid urban wastes", Environ. Technol. Lett., 10, 521-526, 1989.
Piotrowski, E. G., Valentine, K. M., and Pfeffer, P. E., "Solid-state, C-13, cross-polarization, "magic-angle" spinning, NMR spectroscopy studies of sewage sludge", Soil Sci., 137, 194-203, 1984.
Poincelot, R. P., "A scientific examination of the principles and practice of composting", Compost Sci., 15, 24-31, 1974.
Preston, C. M., Ripmeester, J. A., Mathur, S. P., and Levesque, M., "Application of solution and solid-state multinuclear NMR to a peat-base composting system for fish and crab scrap", Can. J. Soil Sci., 31, 63-69, 1986.
Ramos, L., Hernandez, L. M., and Gonzalez, M. J., "Sequenital fractionation of copper, lead, cadmium and zinc in soils from or near Donana National Park", J. Environ. Qual., 23, 50-57, 1994.
Rauret, G., Rubio, R., Lopez-Sanchez, J. R., and Casassas, E., "Determination and speciation of copper and lead in sediments of a Mediterranean river (river Tenes, Catalonia, Spain) ", Water Res., 22, 449-445, 1988.
Rauret, G., Rubio, R., Lopez-Sanchez, J. R., and Casassas, E., "Specific procedure for metal solid speciation in heavily polluted river sediments", Int. J. Environ. Anal. Chem., 35, 89-100, 1989.
Richards, B. K., Peverly, J. H., Steenhuis, T. S., and Liebowitz, B. N., "Effect of processing mode on trace elements in dewatered sludge products", J. Environ. Qual., 26, 782-788, 1997.
Riffaldi, R., Sartori, F., and Levi-Miniz, R., "Humic substances in sewage sludge", Environ. Pollut. Ser. B, 3, 139-146, 1982.
Roletto, E., Barberis, R., Consiglio, M., and Jodice, R., "Chemical parameters for evaluating compost maturity", BioCycle, 26, 46-47, 1985.
Rynk, R., van de Kamp, M., Willson, G. B., Singley, M. E., Richard, T. L., Kolega, J. J., Gouin, F. R., Laliberty, L., Kay, D., Murphy, D. W., Hoitink, H. A. J., and Brinton, W. F., On farm composting, Northeast Regional Agric. Eng. Service, Ithaca, NY, 1992.
Salomons, W., and Forstner, U., "Trace metal analysis on polluted sediments. Part 2. Evaluation of environmental impact", Environ. Technol. Lett., 1, 506-517, 1980.
Saviozzi, A., Levi-Minzi, R., and Riffaldi, R., "Maturity evaluation of organic waste", BioCycle, 29, 54-56, 1988.
Saviozzi, A., Levi-Minzi, R., Riffaldi, R., and Benetti, A., "Evaluating garbage compost", BioCycle, 29, 72-75, 1992.
Sawhney, B. L., Bugbee, G. J., and Stilwell, D. E., "Heavy metals leachability from municipal compost", p. 122-132, In K. B. Hoddinott and T. A. O''Shay (ed.), Application of agricultural analysis in environmental studies, ASTM STP 1162, ASTM, Philadelphia, PA, 1992.
Sawhney, B. L., Bugbee, G. J., and Stilwell, D. E., "Leachability of heavy metals from growth media containing source-separated municipal solid waste compost", J. Environ. Qual., 23, 718-722, 1994.
Shuman, L. M., "Zinc, manganese, and copper in soil fractions", Soil Sci., 127, 10-17, 1979.
Shuman, L. M., "Sodium hypochlorite methods for extracting microelements associated with soil organic matter", Soil Sci. Soc. Am. J., 47, 656-660, 1983.
Shuman, L. M., "Fractionation method for soil microelements", Soil Sci., 140, 11-22, 1985.
Simeoni, L. A., Barbarick, K. A., and Sabey, B. R., "Effect of small-scale composting of sewage sludge on heavy metal availability to plants", J. Environ. Qual., 13, 264-268, 1984.
Sims, J. T., and Kline, J. S., "Chemical fractionation and plant uptake of heavy metals in soils amended with co-composted sewage sludge", J. Environ. Qual., 20, 387-395, 1991.
Singh, J. P., Karwasra, S. P. S., and Singh, M., "Distribution and forms of copper, iron, manganese, and zinc in calcareous soils of India", Soil Sci., 146, 359-366, 1988.
Sloan, J. J., Dowdy, R. H., Dolan, M. S., and Linden, D. R., "Long-term effects of biosolids applications on heavy metal bioavailability in agricultural soils", J. Environ. Qual., 26, 966-974, 1997.
Soltanpour, P. N., Jones, J. B., and Workman, S. M., "Optical emission spectrometry", p. 29-65, In A. L. Page et al. (ed.), Methods of soil analysis, Part 2, 2nd ed., Agron. Monogr. 9, ASA, Madison, WI, 1982.
Sommers, L. E., and Lindsay, W. L., "Effect of pH and redox on predicted heavy metal-chelate equlibria in soils", Soil Sci. Soc. Am. J., 43, 39-47, 1979.
Soon, Y. K., and Bates, T. E., "Chemical pools of cadmium, nickel, and zinc in polluted soils and some preliminary indications of their availability to plants", J. Soil Sci., 33, 477-488, 1982.
Sposito, G., The chemistry of soils. Oxford Univ. Press, New York, 1989.
Sposito, G., Jund, L. J., and Chang, A. C., "Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases", Soil Sci. Soc. Am. J., 46, 260-264, 1982.
Stevenson, F. J., Humus chemistry: Genesis, composition, reaction, John Wiley & Sons, New York, 1982.
Stevenson, F. J., "Stability constants of Cu2+, Pb2+, and Cd2+ complexes with humic acids", Soil Sci. Soc. Am. J., 40, 665-672, 1976.
Stevenson, F. J., and Goh, K. M., "Infrared spectra of humic acids and related substances", Geochim. Cosmochim. Acta., 35, 471-483, 1971.
Stevenson, F. J., Humus chemistry, John Wiley & Sons, New York, 1994.
Stover, R. C., Sommers, L. E., and Silviera, D. J., "Evaluation of metal in wastewater sludge", J. Water Pollut. Control Fed., 48, 2165-2175, 1976.
Stumm, W., and Morgan, J. J., Aquatic chemistry: An introduction emphasizing chemical equilibria in natrual waters, 2nd ed., John Wiley & Sons, New York, 1981.
Sugahara, K., and Inoko, A., "Comparison analysis of humus and characterization of humic acid obtained from city refuse compost", Soil Sci. Plant Nutr., 27, 213-224, 1981.
Sugahara, K., Harada, Y., and Inoko, A., "Color changes of city refuse during composting process", Soil Sci. Plant Nutr., 25, 197-208, 1979.
Sweeten, J. M., "Composting manure and sludge", p. 38-44, In National Poultry Waste Management Symp., Columbus, OH., 18-19 Apr. 1988, Dep. of Poultry Science, Ohio State Univ., Columbus, OH., 1988.
Tack, F. M. G., and Verloo, M. G., "Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review", Intern. J. Environ. anal. Chem., 59, 225-238, 1995.
Taiwan Agricultural Year Book, Department of Agriculture and Forestry, Taiwan Provincial Government, Taiwan, R.O.C., 1995.
Terry, R. E., Nelson, D. W., and Sommers, L. E., "Carbon cycling during sewage sludge decomposition in soils", Soil Sci. Soc. Am. J., 43, 494-499, 1979.
Tessier, A., and Campbell, P. G. C., "Partitioning of trace metals in sediments", p. 183-199, In J. R. Kramer and H. E. Allen (ed.), Metal speciation: Theory, analysis, and application, Lewis Publ., Chelsea, MI., 1988.
Tessier, A., Campbell, P. G. C., and Bisson, M., "Sequential extraction procedure for the speciation of particulate trace metals", Analytical Chemistry, 51, 844-851, 1979.
Thurman, E. M. and Malcolm, R. L., "Preparative isolation of aquatic humic substances", Environ. Sci. Technol., 15, 463-466, 1981.
Tiquia, S. M., Tam, N. F. Y., and Hodgkiss, I. J., "Composting of spent pig litter at different seasonal temperatures in subtropical climate", Environ. Pollut., 98, 97-104, 1997.
Tisdell, S.E., and Breslin, V.T., "Characterization and leaching of elements from municipal solid waste compost", J. Environ. Qual., 24, 827-833, 1995.
Unwin, R. J., "Copper in pig slurry: some effects and consequences of spreading on grassland", In Inorganic Pollution and Agriculture, MAFF Reference Book 326, HMSO, London, 1980.
U.S. Environmental Protection Agency, "A procedure for estimating monofilled solid waste leachate composition", Tech. Resource Doc. SW-924, 2nd ed., Hazardous Waste Eng. Res. Lab. Office of Research and Development, Washington, DC., January 1986, USEPA, Washington, DC., 1986.
U.S. Environmental Protection Agency, "Hazardous waste management system; identification and listing of hazardous waste; toxicity characteristic revision; final rule, Part II", Fed. Reg., 55(61), 11798-11877, 1990a.
U.S. Environmental Protection Agency, "Hazardous waste management system; identification and listing of hazardous waste; toxicity characteristic revision; final rule, Part V", Fed. Reg., 55(126), 26986-26998, 1990b.
U. S. Environmental Protection Agency, "Standards for use or disposal of sewage sludge", Fed. Regist., 58(32), 9248-9415, 1993.
Van der Watt, H.v.H., Summer, M. E., and Cabrera, M. L., "Bioavailability of copper, manganese, and zinc in poultry litter", J. Environ. Qual., 23, 43-49, 1994.
Wadman, W. P., Sluijsmans, C. M. J., and de la Lande Cremer L. C. N., "Value of animal manures: Changes in perception", p. 1-16, In H. G. van der Meer, et al. (ed.), Animal manure on grassland and fodder crops, Fertilizer or waste? Martinus Nijhoff Publ., Dordrecht, the Netherlands, 1987.
Wershaw, R. L., "Application of nuclear magnetic resonance for determining functionality in humic substances", p.561-584, In G. R. Aiken et al. (ed.), Humic substances in soil, sediment and water, John Wiley and Sons, New York, 1985.
Welte, B., Bles, N., and Montiel, A., "Study of the different methods of speciation of heavy metals in the sediments: II. Applications", Sci. Tech. Lett., 4, 223-238, 1983.
Wilson, M. A., NMR techniques and applications in geochemistry and soil chemistry, Pergamon Press, Headington Hill Hall, Oxford, England, 1987.
Witter, E., and Lopez-Real, J., "Nitrogen losses during the composting of sewage sludge, and the effectiveness of clay soil, and compost in adsorbing the volatilized ammonia", Biol. Wastes, 23, 279-294, 1988.
Wood, J., and Bormann, F. M., "Short term effects of simulated acid rain upon the growth and nutrient relations of pinus strolous", J. Water Air Soil Pollut., 7, 479-488, 1977.
Xian, X., "Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants", Plant Soil, 113, 257-264, 1989.
Zucconi, F., Forte, M., Monaco, A., and De Bertoldi, M., "Biological evaluation of compost maturity", BioCycle, 22, 27-29, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林正祥,1997,〈邏輯斯迴歸模式與對數線性模式之比較〉,《中國統計學報》,35(3):249-269。
2. 李炳南、唐德明、傅志山,1994,〈談判結構之分析〉,《台灣大學中山學術論叢》,12:213-228。
3. 李奇、段良雄,1996,〈敘述偏好與顯示偏好模式之比較〉,《運輸計劃季刊》,25(2):189-208。
4. 呂民璿,1987,〈都市居民心理動機及其社會參與型態〉,《東海學報》,28:333-350。
5. 石昆牧,1997,〈保齡球運動之場地設施〉,《大專體育》,32:165-170。
6. 王瑞麟、張麗卿、紀明德,1996,〈保齡球館的經營策略分析-以淡水三 家保齡球館為例〉,《大專體育》,24:145-151。
7. 林享博、陳鵬升,1999,〈社區居民為地方公共財捐獻的意願:以新設一所國民中學為例〉,《規劃學報》。
8. 林瑞山,1993,〈淺談談判〉,《工業簡訊》,23(2) :71-77。
9. 林瑞山,1996,〈再談談判〉,《工業簡訊》,26(2):85-91。
10. 邱毅,1999,〈強力談判與加值談判〉,《經濟前瞻》。64:110-113。
11. 邱毅,1999,〈衝突管理與溝通技巧〉,《經濟前瞻》。61:102-108。
12. 洪鴻智,1995,〈環境污染爭議事件之協商〉,《規劃學報》,22:123-147。
13. 張世賢,1992,〈政策溝通協調的策略分析:宜蘭六輕設廠個案探討〉,《中國行政評論》,1(4):33-56。
14. 曹勝雄、曾國雄、張德儀,1997,〈旅行業組織購買選擇行為之研究-羅吉特模式之應用〉,《管理與系統》,4(2):127-146。
15. 陳月娥,1997,〈走出傳統-談雙贏之現代團體協商模式〉,《勞資關係月刊》,16(6):17-27。