(一) 中文部分
1.古永嘉、李在僑、羅玉惠(2009),「加入公司治理指標建構信用評等預測模型之研究」,當代會計,第十卷第二期,頁131-162。2.古永嘉、陳達新、陳維寧、楊延福(2007),「以會計資訊衡量企業信用風險-區別分析與類神經網路模型之比較與應用」,管理科學研究,第四卷第一期,頁43-60。3.李沃牆(2010),「考量總體變數下的公司違約預測-遺傳規畫決策樹與Logit 模型之比較」,臺灣銀行季刊,第六十一卷第一期,頁168-186。
4.林金賢、陳育成、劉沂佩、鄭育書(2004),「具學習性之模糊專家系統在則務危機預測上之應用」,管理學報,第二十一卷第三期,頁291-309。5.林淑萍、黃劭彥、蔡昆霖(2007),「企業危機預警模式之研究-DEA-DA 、邏輯斯迴歸與類神經網路之應用」,會計與公司治理,第四卷第一期,頁35-56。6.林萍珍、柯博昌、游俊忠(2010),「演化式多重組合羅吉斯迴歸模型-應用於信用評等,資訊管理學報」,第十七卷第二期,頁115-139。
7.邱志洲、簡德年、高淩菁(2004),「演化式類神經網路在企業危機診斷上之應用-智慧資本指標的考量」,臺大管理論叢,第十四卷第二期,頁1-22。8.邱登裕、鍾典村、吳致遠、謝齊莊(2007),「以GA-SVM法探討企業財務危機之研究」,中華管理學報,第八卷第四期,頁61-85。9.施人英、陳文華、吳壽山(2007),「探討支持向量機器在發行人信用評等分類模式之應用」,資訊管理學報,第十四卷第三期,頁155-178。10.唐麗英、張永佳、吳佩珊(2009),「建構台灣中小企業兩階段風險評估模型」,中小企業發展季刊,第十四卷,頁83-110。
11.張大成、林郁翎、林修逸(2007),「應用市場資訊於企業危機預警之研究」,運籌與管理學刊,第六卷第一期,頁1-18。12.陳昭宏(2005),「以事前控制觀點應用灰色預測理論與 Logit 式於財務危機預警模型之研究」,商管科技季刊,第六卷第四期,頁655-676。13.陳瓊蓉、林俊男(2008),「臺灣上市櫃公司財務危機預警模型之研究-景氣收縮期與擴張期之比較景氣衰退期與成長期之比較」,臺灣銀行季刊,第五十九卷第四期,頁281-300。14.黃博怡、張大成、江欣怡(2006),「考慮總體經濟因素之企業危機預警模型」,金融風險管理季刊,第二卷第二期,頁75-89。15.羅聖雅(2009),「台灣地區上市公司信用風險衡量與績效評估」,創新研發學刊,第五卷第二期,1-17。(二) 英文部分
1.Altman, E. (1968),“Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”, The Journal of Finance, Vol.23(4), pp.589-609.
2.Cho, S., Kim, J. and Bae, J.K. (2009),“An integrative model with subject weight based on neural network learning for bankruptcy prediction”, Expert Systems with Applications, Vol.36, pp.403-410.
3.Coats, P. and Fant, F. (1993),“Recognizing financial distress patterns using a neural network tool”, Financial Management, Vol.22(3), pp.142-155.
4.Ding, Y., Song, X. and Zen, Y. (2008),“Forecasting financial condition of Chinese listed companies based on support vector machine”, Expert Systems with Applications, Vol.34, pp.3081-3089.
5.Hung, C. and Chen, J.H. (2009),“A selective ensemble based on expected probabilities for bankruptcy prediction”, Expert Systems with Applications, Vol.36, pp.5297-5303.
6.Kim, M.J. and Kang, D.K. (2010),“Ensemble with neural networks for bankruptcy prediction”, Expert Systems with Applications, Vol.37, pp.3373-3379.
7.Li, H., Huang, H.B., Sun, J. and Lin, C. (2010),“On sensitivity of case-based reasoning to optimal feature subsets in business failure prediction”, Expert Systems with Applications, Vol.37, pp.4811-4821.
8.Liu, H. and Huang, S. (2010),“Integrating GA with Boosting Methods for Financial Distress Predictions”, Journal of Quality, Vol.17(2), pp.131-158.
9.McKee T. (2009),“A Meta-Learning Approach to Predicting Financial Statement Fraud”, Journal of Emerging Technologies in Accounting, Vol.6, pp.5-26.
10.Min, J. and Lee, Y.C. (2005),“Bankruptcy prediction using support vector machine with optimal choice of kernel function parametersm”, Expert Systems with Applications, Vol.28, pp.603-614.
11.Min, S.H., Lee, J. and Han, I. (2006),“Hybrid genetic algorithms and support vector machines for bankruptcy prediction”, Expert Systems with Applications, Vol.31, pp.652-660.
12.Mokhatab Rafiei, F., Manzari, S.M. and Bostanian, S. (2011),“Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis Iranian evidence”, Expert Systems with Applications.
13.Ohlson, J. (1980),“Financial Ratios and the Probabilistic Prediction of Bankruptcy”, Journal of Accounting Research, Vol.18(1), pp.109-131.
14.Wu, C.H., Tzeng, G.H., Goo, Y.J. and Fang W.C. (2007),“A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy”, Expert Systems with Applications, Vol.32, pp.397-408.
15.Yim, J. and Mitchell, H. (2004),“A comparison of Japanese failure models Hybrid neural networks, logit models, and discriminant analysis”, International Journal of Asian Management, Vol.3, pp.103-120.