跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊德
研究生(外文):Jiun-De Wu
論文名稱:應用免疫演算法於饋線電容器最佳化規劃
論文名稱(外文):Optimal Capacitor Planning of Distribution Feeders Using Immune Algorithm
指導教授:陳朝順陳朝順引用關係
指導教授(外文):Chao-Shun Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:135
中文關鍵詞:免疫演算法饋線電容器負載組成配電變壓器配電系統
外文關鍵詞:OMSCIS
相關次數:
  • 被引用被引用:6
  • 點閱點閱:547
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
電力系統包含發電系統、輸電系統、配電系統等三大部份,其中配電系統為電力系統之最下游,涵蓋層面遼闊,電力輸送從配電變電所或二次變電所之主變壓器、饋線、分歧線及配電變壓器、接戶線、線路接頭甚至電表等等,都會造成線路損失,也降低系統運轉效率,電力公司在面對市場自由化的趨勢與京都議定書實施之重大衝擊,必須運用各種方法與策略,將損失降至最小。
本論文之主旨,在考量降低配電系統線路損失與電容器投資成本,推導出最佳電容器位置規劃與時控型電容器操作運轉策略。並以台電實際配電饋線系統進行研究,考慮線路互耦效應與饋線負載模型(Daily Load Curve)之影響,進行三相負載潮流分析,以解決減少線路損失之課題,另外,由配電饋線網路架構與用戶售電資料之關連性,推導出饋線區段負載量,及運用免疫演算法規劃最佳的饋線電容器之位置及其容量大小。
為驗證本論文所提出之電容器最佳化規劃,我們以台電鳳山區營業處轄內上寮二次變電所上愛線(饋線BW34)做為電腦模擬測試饋線,依據饋線與配電變壓器虛功負載曲線,推導出固定型與時控型電容器裝置位置與容量大小,及時控型電容器運轉投切時間之電容器最佳規劃。本論文所提最佳電容器規劃的方法,確能有效降低配電饋線損失,及提高電容器投資效益。
Power System consists of generation, transmission and distribution systems to deliver the power service to customers. Distribution systems cover a very wide area with components such as main transformers, primary feeders, laterals, distribution transformers, low tension lines and meters. All these components contribute distribution line loss to deteriorate system operation efficiency. With the power system deregulation and Kyoto Protocol, it becomes an important issue for utility companies to achieve loss minimization by various strategies. The objective of this thesis is to derive both the optimal planning of capacitor placement and the operation strategy of switched capacitors by considering the loss reduction and investment cost of capacitors. A practical distribution feeder in Taipower has been selected for three-phase load flow analysis to solve power loss by considering the mutual-coupling effect and feeder daily load curve. The loading in each service zone is analyzed according to the feeder network configuration and power consumption of customers served. The immune algorithm is utilized to derive the optimal locations and capacity of capacitors to be installed along the feeder.
To demonstrate the effectiveness of the proposed capacitor planning, Feeder BW34, which served by Shang-Liao secondary substation of Feng-Shan District, is selected for computer simulation. The installation locations of both fixed and switched capacitors as well as the operation time of switched capacitors are determined according to the reactive power loading profiles of distribution feeders and distribution transformers. With the optimal capacitor planning proposed, the feeder power loss can be reduced effectively and cost benefit of capacitor investment can be enhanced too.
中文摘要 I
英文摘要 III
目錄 V
圖目錄 VII
表目錄 XI
第一章緒論 1
1.1研究背景與動機 1
1.2研究步驟與方法 3
1.3論文內容概述 5
第二章配電饋線之網路模型與負載特性 6
2.1前言 6
2.2停限電運轉圖資系統 7
2.3配電網路拓樸分析 10
2.4配電圖資設備減量 19
2.5饋線負載資料及負載特性 23
2.5.1饋線負載特性 27
第三章配電饋線三相負載潮流分析 29
3.1前言 29
3.2配電變壓器負載量推導 30
3.2.1利用停限電運轉圖資系統建立用戶與變壓器連絡關係 31
3.2.2用戶服務資訊系統 41
3.2.3配電變壓器及個別用戶每小時負載推導 45
3.3三相負載潮流分析 47
3.3.1線路模型 47
3.3.2變壓器模型 50
3.3.3配電饋線數學模型建立 53
第四章配電饋線電容器最佳規劃 54
4.1前言 54
4.2目標函數 55
4.3假設虛功負載均勻值之饋線電容器規劃 59
4.3.1固定型電容器規劃 59
4.3.2固定型電容器與時控電容器規劃 65
4.4應用免疫演算法於饋線電容器最佳規劃 69
4.4.1免疫演算法原理 69
4.4.2雜異度與相似度計算 74
4.4.3考慮整體成本損失最小化之電容器規劃 77
第五章配電系統模擬分析 82
5.1前言 82
5.2台電饋線電容器規劃模擬 83
5.2.1假設虛功負載均勻值之饋線電容器規劃 85
5.2.2應用免疫演算法於饋線電容器規劃 92
第六章結論與未來展望 113
6.1結論 113
6.2未來展望 115
參考文獻 116
[1]J. B. Bunch, R. D. Miller and J. E. Wheeler,”Distribution System Integrated Voltage and Reactive Power Control, ”IEEE Trans. PAS,Vol. PAS-101,1982,pp.248-289.
[2]K. Iba, H. Suzuki, K. I. Suzuki, and K. Suzuki, “Practical Reactive Power Allocation/Operation Planning Using Successive Linear Programming”, IEEE Transactions on Power Systems, Vol. 3, No. 2, May 1988, pp.558-566.
[3]M. K. Mangoli, K. Y. Lee, and Y. M. Park, “Optimal Real and Reactive Power Control Using Linear Programming”, Electric Power Systems Research, Vol. 26, No. 1, January 1993, pp. 1-10.
[4]S. S. Sachdeva and R. Billinton, “Optimum Network VAR Planning by Nonlinear Programming”, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-92, Jul/Aug 1973, pp. 1217-1225.
[5]S. Ertem and J. R. Tudor, “Optimum Shunt Capacitor Allocation by Nonlinear Programming”, IEEE Transactions on Power Delivery, Vol. PWRD-2, No. 4, 1987, pp. 1310-1316.
[6]W. S. Jwo, C. W. Liu, C. C. Liu, and Y. T. Hsiao, “Hybrid Expert System and Simulated Annealing Approach to Optimal Reactive Power Planning”, IEE Proceedings-Generation, Transmission and Distribution, Vol. 142, No. 4, July 1995, pp. 381-385.
[7]C. S. Chang and S. S. Sim, “Optimizing Train Movements Through Coast Control Using Genetic Algorithms ”, IEE Proceedings Electric Power Appl., Vol. 144. No. 1, January 1997, pp. 65-73.
[8]K. Iba, “Reactive Power Optimization by Genetic Algorithm”, IEEE Transactions on Power Systems, Vol. 9, No. 2, May 1994, pp. 685-692.
[9]Y. Y. Hsu and C. C. Yang, “A Hybrid Artificial Neural Network -- Dynamic Programming Approach for Feeder Capacitor Scheduling”, IEEE Transactions on Power Systems, Vol. 9, No. 2, May 1994, pp. 1069-1075.
[10]C. T. Su, G. R. Lii, and C. C. Tsai, “Optimal Capacitor Allocation Using Fuzzy Reasoning and Genetic Algorithms for Distribution Systems”, to appear in a special issue of Mathematics and Computers in Simulation Journal.
[11]C. W. Liu, W. S. Jwo, C. C. Liu, and Y. T. Hsiao, “A Fast Global Optimization Approach to VAR Planning for the Large Scale Electric Power Systems”, IEEE Transactions on Power Systems, Vol. 12, No.1, February 1997, pp. 437-443
[12]K. Y. Lee and F. F. Yang, “Optimal Reactive Power Planning Using Evolutionary Algorithms: A Comparative Study for Evolutionary Programming, Evolutionary Strategy, Genetic Algorithm, and Linear Programming”, IEEE Transactions on Power Systems, Vol. 13, No. 1, February 1998, pp. 101-108.
[13]Yausuhiro Tsujimura, Mitsuo Gen, “Entropy-Based Genetic Algorithm for Solving TSP,” 1998 Second International Conference on Knowledge-Based Intelligent Electronic System, pp.285-290,21-23 April 1998,Adelaide,Australia.
[14]何誠育,“考慮用戶負載模型及配合啟示性規則以改善配電系統相位平衡之研究”,碩士論文,國立中山大學,中華民國九十三年.
[15]“台灣電力公司台北南區營業處(OMS) 停限電運轉圖資系統:系統操作文件”,資憲科技股份有限公司,中華民國九十年十一月.
[16]嚴樂陽,“FREEFORM 使用說明”,祥正電機股份有限公司,中華民國九十年.
[17]“台電系統負載特性調查分析研究”,第四期計劃期中報告,台灣電力公司,2003年.
[18]M.Y. Cho, C. S. Chen and W. M. Lin, “Design of a distribution database with customer daily load patterns, ”Electric Power Systems Research,vol.23,no.2,1992,pp.147-154.
[19]C.S. Chen, J.C. Hwang, M.Y. Cho and Y.W. Chen, "Development of simplified loss models for distribution system analysis, " IEEE Trans. Power Delivery, vol.9, no. 3, July 1994, pp. 1545-1551.
[20]陳郁文,“以停限電圖資管理系統支援配電系統損失分析之研究”,碩士論文,國立中山大學,中華民國九十四年.
[21]“配電技術手冊(四)地下配電線路設計”,台灣電力公司業務處,中華民國八十五年八月.
[22]“配電技術手冊(一)配電系統規劃”,台灣電力公司業務處,中華民國九十三年十二月.
[23]J. V. Schmill, “Optimum Size and Location of Shunt Capacitors on Distribution Feeders,” IEEE Trans. on Power Systems, Vol. PAS-84s, No. 9, pp. 825-832, Sep, 1965.
[24]李宗恩,“地理資訊系統與智慧型物件導向系統於配電系統緊急開關操作之應用”, 博士論文,國立中山大學,中華民國八十三年.
[25]吳家駿,“應用免疫演算法於配電系統運轉策略之研究”,碩士論文,國立中山大學,中華民國九十年.
[26]朱世宏,“應用免疫演算法於捷運系統換流器規劃與濾波器設計”, 碩士論文,國立中山大學,中華民國九十三年六月.
[27]周鵬程,“遺傳演算法原理與應用-活用Matlab”,全華科技圖書股份有限公司,中華民國九十一年十月.
[28]羅意茹,“應用免疫演算法於可控退化率存貨問題之研究”,碩士論文,國立嘉義大學,中華民國九十二年.
[29]S. J. Huang, “An Immune-Based Optimization Method to Capacitor Placement in a Radial Distribution System,” IEEE Trans. on Power Delivery, Vol. 15, No. 2, pp. 744-749, April 2000.“
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊