【1】H. Shu, M. Chang, Decolorization effects of six azo dyes by O, UV/O and UV/HO processes, Dyes and Pigments, 65 (2005) 25-31.
【2】D.P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K.M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, M.K. Nazeeruddin, Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications, Journal of the American Chemical Society, 130 (2008) 6259-6266.
【3】S. Norman. A Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments (2nd Edition) : By H. Zollinger, published by VCH, Cambridge. Journal of Photochemistry and Photobiology A-chemistry, 1992, 67, 385-386.
【4】A.R. Khataee, M.N. Pons, O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure, Journal of Hazardous Materials, 168 (2009) 451-457.
【5】C. Pan, J. Wu, Y. Wang, D. Li, Y. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly, Advanced Functional Materials, 22 (2012) 1518-1524.
【6】S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells, 77 (2003) 65-82.
【7】Y.R. Jiang, H.P. Lin, W.H. Chung, Y.M. Dai, W.Y. Lin, C.C. Chen, Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet, Journal of Hazardous Materials, 283 (2015) 787-805.
【8】T. Gao, Z. Chen, Y. Zhu, F. Niu, Q. Huang, L. Qin, X. Sun, Y. Huang, Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property, Materials Research Bulletin, 59 (2014) 6-12.
【9】Y. Nosaka, M. Matsushita, J. Nishino, A.Y. Nosaka, Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds, Science and Technology of Advanced Materials, 6 (2005) 143-148.
【10】周尚毅,台中教育大學科學教育研究所碩士論文(2015)
【11】林禾弁,台中教育大學科學教育研究所碩士論文(2015)
【12】Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, Zinc germanium oxynitride as aphotocatalyst for overall water splitting under visible light, Journal of Physical Chemistry C, 111 (2007) 1042-1048.2
【13】K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting, Journal of the American Chemical Society, 127 (2005) 8286-8287.
【14】X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nature Materials, 8 (2009) 76-80.
【15】N. Huang, Z. Yi, Enhanced ethylene photodegradation performance of g-C3N4-Ag3PO4 composites with direct Z-scheme configuration, Chemistry-A European Journal, 20 (2014) 17590-17596.
【16】S. Chlogl, M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, Journal of Materials Chemistry, 18 (2008) 4893-4908.
【17】J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Design of a direct Z-scheme photocatalyst:preparation and characterization of Bi2O3/g-C3N4 with high visible light activity, Journal of Hazardous Materials, 280 (2014) 713-722.
【18】F. Dong, L.W. Wu, Y.J. Sun, M. Fu, Z.B. Wu, S.C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21 (2011) 15171-15174.
【19】S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuri, 26 (2010) 3894-3901.
【20】S. Jana, M.K. Purkait, K. Mohanty, Removal of crystal violet by advanced oxidation and microfiltration, Applied Clay Science, 50 (2010) 337-341.
【21】Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: A review ,Nanoscale (2014)
【22】J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal, Chemical Engineering Journal, 185–186 (2012) 91-99.
【23】S. Shenawi-Khalil, V. Uvarov, Y. Kritsman, E. Menes, I. Popov, Y. Sasson, A new family of BiO(ClxBr1-x) visible light sensitive photocatalysts, Catalysis Communications, 12 (2011) 1136-1141.
【24】W. Zhu, Z. Yang, L. Wang, Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater, Water Research, 30 (1996) 2949-2954.
【25】Triarylmethane and diarylmethane dyes, in: Ullmann’s encyclopedia of industrial chemistry. Part A27, sixth ed., Wiley-VCH, NewYork, 2001.
【26】R.M. El-Shishtawy, S.H. Nassar, N.S.E. Ahmed, Anionic colouration of acrylic fibre. Part II: Printing with reactive, acid and direct dyes, Dyes and Pigments, 74 (2007) 215-222.
【27】Y.F. Sasaki, S. Kawaguchi, A. Kamaya, M. Ohshita, K. Kabasawa, K. Iwama, K. Taniguchi, S. Tsuda. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Research, 2002, 519, 103-119.
【28】S. Srivastava, R. Sinha, D. Roy. Toxicological effects of malachite green. Aquatic Toxicology, 2004, 66, 319-329.
【29】W. Azmi, R.K. Sani, U.C. Banerjee. Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 1998, 22, 185-191.
【30】T. Gessner, U. Mayer. Triarylmethane and Diarylmethane Dyes. Encyclopedia of Industrial Chemistry. 2000.
【31】H. Xie, D. Shen, X. Wang, G. Shen, Microwave hydrothermal synthesis and visible-light photocatalytic activity of Bi2WO6 nanoplates. Materials Chemistry and Physics, 103 (2007) 334-339.
【32】H. Selcuk. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments, 2005, 64, 217-222.
【33】I. Arslan-Alaton, Degradation of a commercial textile biocide with advanced oxidation processes and ozone, Journal of Environmental Management, 82 (2007) 145-154.
【34】C. Tang, V. Chen. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Research, 2004, 38, 2775-2781.
【35】李中光,劉新校,陳昱峰,吳孟昌,劉佳雯 Fenton氧化法在處理生物難降解有機廢水上之應用,2006
【36】K. Honda, A. Fujishima. Electrochemical photolysis of water at a semiconductor electrode. Nature 238(1972) .
【37】Ling Zhang, Wenzhong Wang∗, Songmei Sun, Jiehui Xu, Meng Shang, Jia Ren. Hybrid Bi2SiO5 mesoporous microspheres with light response for environment decontamination. Applied Catalysis B: Environmental 100 (2010) 97–101
【38】C. Cui, Y. Wang, D. Liang, W. Cui, H. Hu, B. Lu, S. Xu,X. Li, C. Wang, Yu Yang. Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Agheterostructure photocatalyst with enhanced photocatalytic activityand stability under visible light. Applied Catalysis B: Environmental (2014) 150-160
【39】B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. Journal of the American Chemical Society 125 (2003) 10288-10300.
【40】林麗娟,“X光繞射原理及其應用”,工業材料,86期,1997【41】羅聖全,“研發奈米科技的基本工具之一 電子顯微鏡介紹 – TEM” ,2008
【42】X. Xiao, C. Liu, R. Hu, X. Zuo, J. Nan, L. Li, L. Wang, Oxygen-rich bismuth oxyhalides:generalized one-pot synthesis, band structures and visible-light photocatalytic properties, Journal of Materials Chemistry, 22 (2012) 22840-22843.
【43】Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu. Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Applied Catalysis B: Environmental 100 (2010) 179-183.
【44】 Xiang Feng, Xiang Qi, Jun Li, Liwen Yang, Mengchun Qiu, Jinjie Yin, Fang Lu, Jianxin Zhong. Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays , Applied Surface Science 257 (2011) 5571–5575
【45】H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation, Chemical Engineering Journal, 218 (2013) 183-190.
【46】J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis, ACS Catalysis, 2 (2012) 940-948.
【47】M. Xu, L. Han, S. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostuctured photocatalysts with enhanced visible-light photocatalytic activity, Applied materials & Interfaces, 5 (2013) 12533-12540.
【48】Y. He, J. Cai, T. Li, Y. Wu, H. Lin, L. Zhao, M. Luo, Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation, Chemical Engineering Journal, 215-216 (2013) 721-730.
【49】N. Nakada, S. Takizawa, h. Takada, Evaluation of pharmaceuticals and personal care products as watersoluble molecular markers of sewage, Environmental Science and Technology, 42 (2008) 6347-6353.
【50】L. Ge, C. Han, Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity, Applied Catalysis B: Environmental, 117-118 (2012) 268-271.
【51】J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Design of a direct Z-scheme photocatalyst:preparation and characterization of Bi2O3/g-C3N4 with high visible light activity, Journal of Hazardous Materials, 280 (2014) 713-722.
【52】H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation, Chemical Engineering Journal, 218 (2013) 183-190.
【53】J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis, ACS Catalysis, 2 (2012) 940-948.
【54】M. Xu, L. Han, S. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostuctured photocatalysts with enhanced visible-light photocatalytic activity, Applied materials & Interfaces, 5 (2013) 12533-12540.
【55】F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers, Journal of Hazardous Materials, 219-220 (2012) 26-34.
【56】K.L. Li, W.W. Lee, C.S. Lu, Y.M. Dai, S.Y. Chou, H.L. Chen, H.P. Lin, C.C. Chen, Synthesis of BiOBr, Bi3O4Br, and Bi12O17Br2 by controlled hydrothermal method and their photocatalytic properties, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 2688-2697.
【57】F. Teixeira,R. Berjoan ,G. Peraudeau,D. Perarnau,Solar preparation of SiOx (x~1) nanopowders from silicon vaporisation on a ZrO2 pellet. XPS and photoluminescence characterisation, Solar Energy 78 (2005) 763–771
【58】Y. Huo, J. Zhang, M. Miao, Y. Jin, Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances, Applied Catalysis B: Environmental, 111-112 (2012) 334-341.
【59】S.C. Yan, S.B. Lv, Z.S. Li, Z.G. Zou, Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Transactions, 39 (2010) 1488-1491.
【60】L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light :the role of diffusing hydroxyl radicals, Environmental Science &Technology, 44 (2010) 1392-1398.
【61】M. Yin, Z. Li, J. Kou, Z. Zou, Mechanism investigation of visible light induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system, Environmental Science & Technology, 43 (2009) 8361-8366.
【62】G. Li, K.H. Wong, X. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong, Degradation of acid orange 7 using magnetic AgBr under visible light: the roles of oxidizing species, Chemosphere, 76 (2009) 1185-1191.