跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/03 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊謹聰
研究生(外文):Yang,Chin-Tsung
論文名稱:矽酸鉍暨矽酸鉍複合石墨化氮化碳光觸媒:合成、特性、活性與其光催化降解有機汙染物之研究
論文名稱(外文):The photocatalysts of Bismuth silicate and bismuth silicate/graphitic carbon nitride composites: Synthesis, characterization, activity, and their photocatalytic degradation of the organic pollutants
指導教授:陳錦章陳錦章引用關係
指導教授(外文):Chen,Chiing-Chang
口試委員:張嘉麟李文亮
口試委員(外文):Chang,Jia-LinLee,Wen-Lian
口試日期:2015-06-30
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學教育與應用學系碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:130
中文關鍵詞:高壓水熱法異質結合矽酸鉍可見光觸媒石墨化氮化碳結晶紫
外文關鍵詞:Autoclave HydrothermalHeterojunctionBismuth silicatePhotocatalystgraphitic carbon nitride (g-C3N4)Crystal violet
相關次數:
  • 被引用被引用:2
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以高壓水熱法(hydrothermal methods)合成矽酸鉍及矽酸鉍複合石墨化氮化碳(graphitic carbon nitride, g-C3N4),而矽酸鉍複合石墨化氮化碳此新穎的異質結合更是首次以水熱法製造出來。其中g-C3N4是以三聚氰胺在馬弗爐(Muffle Furnace)內鍛燒540℃合成,矽酸鉍以硝酸鉍及矽酸鈉為起始物溶解在1M硝酸水溶液並調整pH值,然後將該水溶液轉移到15毫升高壓釜中以150℃加熱8小時。矽酸鉍複合石墨化氮化碳則是將矽酸鉍和g-C3N4依不同比率混合在高壓釜中以150℃加熱4小時。觸媒樣品以X射線粉末繞射圖(XRD)、場發掃描式電子顯微鏡(FE-SEM )、場發穿透式電子顯微鏡(FE-TEM)、X射線光電子能譜圖(XPS )、光激發螢光光譜(PL)、紫外光-可見光漫反射光譜(DRS)、氮氣吸脫附曲線圖及比表面積測定(BET)、傅立葉轉換紅外線光譜(FT -IR)、電子順磁共振圖譜(EPR)等儀器分析產物的組成,並探討矽酸鉍及矽酸鉍複合g-C3N4對於光催化效率的影響。觸媒的光催化效率是利用光催化反應降解有機汙染物-結晶紫(CV),測量結晶紫(CV)的濃度。
In this study, a series of the bismuth silicate and bismuth silicate composite graphitic carbon nitride (g-C3N4) are prepared using autoclave hydrothermal methods. The novel heterojunctions of BixSiOy/g-C3N4 is fabricated by the hydrothermal method for the first time, in which g-C3N4 is synthesized by calcinations at 540℃ in muffle furnace. Bismuth silicate is prepared by Bi(NO3)3 and Na2SiO3, dissolved in an 1M HNO3 aqueous solution and adjusted the pH value, and then the aqueous solution is transferred into a 15 mL Teflon-lined autoclave and is heated to 150 oC for 8 hours. Finally, the BixSiOy and g-C3N4 are mixed in different ratio in a autoclave and is heated to 150oC for 4 hours. The products are characterized by XRD, SEM-EDS, FE-TEM, HR-XPS, PL, DR-UV, BET, FT-IR, and EPR. inorder to discuss the photocatalytic efficiency of bismuth silicate and bismuth silicate composite g-C3N4. Photocatalytic efficiency of the catalyst is use of photocatalytic degrading of organic pollutants - crystal violet (CV) by measuring crystal violet (CV) concentration.
摘要 I
英文摘要 II
第一章 序論 1
1.1 研究動機 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1染料與染整廢水之特性分類與危害 5
2.1.1染料 5
2.1.2染料的特性與分類 5
2.1.3三苯甲烷類染料.......................................................................7
2.1.4染整廢水之特性與危害...........................................................8
2.2染料廢水處理技術 8
2.2.1 高級氧化程序 9
2.2.2光化學催化氧化法 9
2.3矽酸鉍.............................................................................................10
2.4石墨化氮化碳(g-C3N4) ..................................................................10
第三章 實驗材料與方法 ........................................................................12
3.1實驗流程.........................................................................................12
3.2實驗步驟.........................................................................................13
3.2.1矽酸鉍之製備...........................................................................13
3.2.2石墨化氮化碳(g-C3N4)之製備.................................................13
3.2.3矽酸鉍複合石墨化氮化碳之製備...........................................14
3.3實驗材料與設備.............................................................................14
3.3.1實驗合成材料...........................................................................14
3.3.2染料...........................................................................................15
3.3.3活性物種試劑...........................................................................15
3.4照光程序.........................................................................................16
3.5儀器與分析方法.............................................................................17
3.5.1儀器分析...................................................................................17
3.5.2儀器規格..................................................................................17

第四章 結果與討論 ................................................................................19
4.1 BixSiOy之材料特性分析...............................................................19
4.1.1改變BixSiOy 之合成溫度.......................................................20
4.1.1.1 X射線繞射分析儀........................................................20
4.1.1.2場發式掃描電子顯微鏡/ X光能量分散光譜儀(FE-SEM-EDS)................................................................................22
4.1.1.3場發式穿透電子顯微鏡/X光能量分散光譜儀(FE-TEM-EDS)................................................................................24
4.1.1.4紫外光可見光漫反射光譜儀(UV-visible DRS)..............30
4.1.1.5傅立葉紅外線轉換光譜儀(FT-IR)......................................33
4.1.1.6比表面積測定儀(BET)....................................................35
4.1.1.7 X射線光電子能譜儀(XPS).............................................38
4.1.2改變BixSiOy 之pH值.............................................................42
4.1.2.1 X射線繞射分析儀........................................................42
4.1.2.2場發式掃描電子顯微鏡/ X光能量分散光譜儀(FE-SEM-EDS)................................................................................45
4.1.2.3紫外光可見光漫反射光譜儀(UV-visible DRS).............47
4.1.2.4傅立葉紅外線轉換光譜儀(FT-IR)..................................50
4.1.3改變BixSiOy 鉍和矽之莫耳比...............................................52
4.1.3.1 X射線繞射分析儀........................................................52
4.1.3.2場發式掃描電子顯微鏡/ X光能量分散光譜儀(FE-SEM-EDS)................................................................................57
4.1.3.3紫外光可見光漫反射光譜儀(UV-visible DRS)..............66
4.2 BixSiOy之光催化降解分析...........................................................73
4.2.1 Bi2SiO5晶型矽酸鉍各反應條件下之降解速率....................73
4.2.2 Bi4Si3O12晶型矽酸鉍各反應條件下之降解速率 80
4.2.3 Bi12SiO20晶型矽酸鉍各反應條件下之降解速率 81
4.2.4比較Bi2SiO5、Bi4Si3O12、Bi12SiO20三種晶型矽酸鉍降解速率 85
4.3矽酸鉍複合石墨化氮化碳(Bi2SiO5/g-C3N4) 87
4.3.1 Bi2SiO5/g-C3N4之光催化降解及材料特性分析 87
4.3.1.1 X射線繞射分析儀 87
4.3.1.2場發式掃描電子顯微鏡/ X光能量分散光譜儀(FE-SEM-EDS) 89 4.3.1.3各重量百分比之Bi2SiO5/g-C3N4複合光觸媒降解速率 93
4.3.1.4場發式穿透電子顯微鏡/X光能量分散光譜儀 97
4.3.1.5紫外光可見光漫反射光譜儀 - 10wt.%Bi2SiO5/g-C3N4、Bi2SiO5、g-C3N4特性比較 98
4.3.1.6比表面積測定儀- 10wt.%Bi2SiO5/g-C3N4、Bi2SiO5、g-C3N4特性比較..........................................................................................100
4.3.1.7 X射線光電子能譜儀(XPS)..................................................102
4.3.1.8電子順磁共振圖譜(EPR)-Bi2SiO5/g-C3N4複合光觸媒之自由基檢測..............................................................................................107
4.3.1.9 Bi2SiO5/g-C3N4複合光觸媒活性物種確認..........................108
4.3.1.10光激發螢光光譜(PL)-Bi2SiO5/g-C3N4複合光觸媒之電子-電洞對重組確認..................................................................................111
4.3.1.11紫外光光電子能譜儀(UPS)................................................112
4.3.2觸媒回收之光催化降解活性變化.........................................115
4.3.3 Bi2SiO5/g-C3N4光催化反應機制示意圖...............................116
第五章 結論與建議................................................................................117
5.1 結論.............................................................................................117
5.2 未來方向與建議.........................................................................118
參考文獻..................................................................................................119
表目錄
表 4.1.1改變反應溫度樣品之能帶間隙值 32
表 4.1.2 150℃、200℃、250℃之樣品比表面積、平均孔洞體積及平均孔洞直徑 37
表 4.1.3改變pH值樣品之能帶間隙值 49表 4.1.4矽酸鉍XRD總表 55
表 4.1.5晶相整理表 56
表 4.1.6不同鉍矽莫耳比之矽酸鉍能帶間隙總表(單位eV) 72
表 4.2.1反應速率常數和R2值總表 84
表 4.2.2三晶型矽酸鉍最佳條件反應速率常數和R2值表 86
表 4.3.1反應速率常數和R2值總表 95
表 4.3.2反應速率常數和R2值總表 97
表 4.3.3 Bi2SiO5、g-C3N4、10wt.%Bi2SiO5/g-C3N4樣品之比表面積、平均孔洞體積及平均孔洞直徑..................................................................................102
圖目錄
圖 2.1三苯甲烷母體結構 7
圖 2.2以三聚氰胺合成g-C3N4之過程 11
圖 3.1照光設備 16
圖 4.1.1 BixSiOy在鉍矽比1:1、pH值13時,改變溫度之XRD圖 21
圖 4.1.2左圖為放大10000倍150℃下之Bi12SiO20形貌,右圖為EDS數據 22
圖 4.1.3左圖為放大10000倍200℃下之Bi4Si3O12形貌,右圖為EDS數據 23
圖 4.1.4左圖為放大10000倍250℃下之Bi2SiO5形貌,右圖為EDS數據 23
圖 4.1.5 Bi12SiO20 (加熱150℃、pH值=13、鉍矽比=1:1) 之TEM (a)明場影像圖, (b) SAED擇區電子繞射圖, (c) HR-TEM晶格圖, (d)EDS圖 25圖 4.1.6 Bi4Si3O12 (加熱200℃、pH值=13、鉍矽比=1:1) 之TEM (a)明場影像圖, (b) SAED擇區電子繞射圖, (c) HR-TEM晶格圖, (d)EDS圖 27圖 4.1.7 Bi2SiO5 (加熱250℃、pH值=13、鉍矽比=1:1) 之TEM (a)明場影像圖, (b) SAED擇區電子繞射圖, (c) HR-TEM晶格圖, (d)EDS圖 29圖 4.1.8上圖為改變反應溫度(pH值=13、鉍矽比=1:1)之各晶相矽酸鉍DRS圖譜,下圖為各矽酸鉍樣品之外觀顏色 31圖 4.1.9由公式αhν=A(hν-E)n/2算出之能帶間隙值 32圖 4.1.10改變反應溫度(pH值=13、鉍矽比=1:1)之各晶相矽酸鉍FT-IR圖譜。吸收峰430cm-1為官能基Bi-O 、570cm-1為官能基(SiO4) 4- 、860cm-1為官能基Si-O-Si 、950cm-1 為官能基SiO2、1030cm-1為官能基Si-O、1390cm-1為官能基CO32- 、1635cm-1為分子水molecular water 、3300cm-1為官能基OH- 34圖 4.1.11a 150℃下樣品之等溫氮氣吸脫附圖及孔徑分佈圖 36圖 4.1.11b 200℃下樣品之等溫氮氣吸脫附圖及孔徑分佈圖 36圖 4.1.11c 250℃下樣品之等溫氮氣吸脫附圖及孔徑分佈圖 37圖 4.1.12(a) 150℃(Bi12SiO20) 、200℃(Bi4Si3O12)、250℃(Bi2SiO5 )三種矽酸鉍之XPS全譜圖 39圖 4.1.12(b) 150℃(Bi12SiO20) 、200℃(Bi4Si3O12)、250℃(Bi2SiO5 )三種矽酸鉍之C1s圖 39圖 4.1.12(c) 150℃(Bi12SiO20) 、200℃(Bi4Si3O12)、250℃(Bi2SiO5 )三種矽酸鉍之Bi 4f圖 40
圖 4.1.12(d) 150℃(Bi12SiO20) 、200℃(Bi4Si3O12)、250℃(Bi2SiO5 )三種矽酸鉍之Si 2p圖 40
圖 4.1.12(e) 150℃(Bi12SiO20) 、200℃(Bi4Si3O12)、250℃(Bi2SiO5 )三種矽酸鉍之O1s圖 41圖 4.1.13(a) pH1、pH4、pH7、pH10及pH13之矽酸鉍XRD圖譜(鉍矽比固定1:1,反應溫度固定150℃) 42圖 4.1.13(b) pH1、pH4、pH7、pH10及pH13之矽酸鉍XRD圖譜(鉍矽比固定1:1,反應溫度固定200℃) 43圖 4.1.13(c) pH1、pH4、pH7、pH10及pH13之矽酸鉍XRD圖譜(鉍矽比固定1:1,反應溫度固定250℃) 44圖 4.1.14(a) pH1樣品-Bi6O6(OH)3(NO3)3之SEM圖 46圖 4.1.14(b) pH4樣品-Bi6O6(OH)3(NO3)3之SEM圖 46圖 4.1.15(a) 改變pH 值(溫度固定150℃、鉍矽比=1:1)之各樣品DRS圖譜 48圖 4.1.15(b) 各pH值樣品之外觀顏色 48圖 4.1.15(c) 各pH值之樣品能帶間隙圖譜 49圖 4.1.16各樣品改變pH值(鉍矽比=1:1)之FT-IR圖譜。吸收峰430cm-1為官能基Bi-O 、570cm-1為官能基(SiO4) 4- 、860cm-1為官能基Si-O-Si 、950cm-1 為官能基SiO2、1030cm-1為官能基Si-O、1390cm-1為官能基CO32- 、1450cm-1為官能基O-N-O2-、2360cm-1為官能基CO2 51圖 4.1.17(a) 反應溫度固定150℃,pH值固定pH13,鉍和矽之莫耳比依序為1:1、1:2、1:3、2:1、2:3、3:1、3:2之各晶相矽酸鉍XRD圖譜。 53圖 4.1.17(b) 反應溫度固定200℃,pH值固定pH13,鉍和矽之莫耳比依序為1:1、1:2、1:3、2:1、2:3、3:1、3:2之各晶相矽酸鉍XRD圖譜。 54圖 4.1.17(c) 反應溫度固定250℃,pH值固定pH13,鉍和矽之莫耳比依序為1:1、1:2、1:3、2:1、2:3、3:1、3:2之各晶相矽酸鉍XRD圖譜。 54圖 4.1.18(a) 150℃、pH13、鉍矽莫耳比=1:1,放大10000倍Bi12SiO20之SEM圖及EDS 57圖 4.1.18(b) 150℃、pH13、鉍矽莫耳比=1:2,放大10000倍Bi12SiO20之SEM圖及EDS 57圖 4.1.18(c) 150℃、pH13、鉍矽莫耳比=1:3,放大10000倍Bi2SiO5之SEM圖及EDS 58圖 4.1.18(d) 150℃、pH13、鉍矽莫耳比=2:1,放大10000倍Bi2SiO5之SEM圖及EDS 58圖 4.1.18(e) 150℃、pH13、鉍矽莫耳比=2:3,放大10000倍Bi2SiO5之SEM圖及EDS 58圖 4.1.18(f) 150℃、pH13、鉍矽莫耳比=3:1,放大10000倍Bi12SiO20之SEM圖及EDS 59圖 4.1.18(g) 150℃、pH13、鉍矽莫耳比=3:2,放大10000倍Bi12SiO20之SEM圖及EDS 59圖 4.1.19(a) 200℃、pH13、鉍矽莫耳比=1:1,放大10000倍Bi4Si3O12之SEM圖及EDS 60圖 4.1.19(b) 200℃、pH13、鉍矽莫耳比=1:2,放大50000倍Bi4Si3O12之SEM圖及EDS 60圖 4.1.19(c) 200℃、pH13、鉍矽莫耳比=1:3,放大50000倍Bi4Si3O12之SEM圖及EDS 60圖 4.1.19(d) 200℃、pH13、鉍矽莫耳比=2:1,放大50000倍Bi2SiO5之SEM圖及EDS 61圖 4.1.19(e) 200℃、pH13、鉍矽莫耳比=2:3,放大50000倍Bi2SiO5之SEM圖及EDS 61圖 4.1.19(f) 200℃、pH13、鉍矽莫耳比=3:1,放大50000倍Bi2SiO5之SEM圖及EDS 61圖 4.1.19(g) 200℃、pH13、鉍矽莫耳比=3:2,放大50000倍Bi2SiO5之SEM圖及EDS 62圖 4.1.20(a) 250℃、pH13、鉍矽莫耳比=1:1,放大10000倍Bi2SiO5之SEM圖及EDS 63圖 4.1.20(b) 250℃、pH13、鉍矽莫耳比=1:2,放大10000倍Bi2SiO5之SEM圖及EDS 63圖 4.1.20(c) 250℃、pH13、鉍矽莫耳比=1:3,放大10000倍Bi2SiO5之SEM圖及EDS 63圖 4.1.20(d) 250℃、pH13、鉍矽莫耳比=2:1,放大10000倍Bi2SiO5之SEM圖及EDS 64圖 4.1.20(e) 250℃、pH13、鉍矽莫耳比=2:3,放大10000倍Bi2SiO5之SEM圖及EDS 64圖 4.1.20(f) 250℃、pH13、鉍矽莫耳比=3:1,放大10000倍Bi2SiO5之SEM圖及EDS 64圖 4.1.20(g) 250℃、pH13、鉍矽莫耳比=3:2,放大10000倍Bi2SiO5之SEM圖及EDS 65圖 4.1.21(a) 改變鉍矽莫耳比(pH值固定13、溫度固定150℃)各樣品DRS圖 67圖 4.1.21(b) 150℃各莫耳比樣品之外觀顏色 67圖 4.1.21(c) 150℃各莫耳比樣品之能帶間隙圖譜 68圖 4.1.22(a) 改變鉍矽莫耳比(pH值固定13、溫度固定200℃)各樣品DRS圖 69圖 4.1.22(b) 200℃各莫耳比樣品之外觀顏色 69圖 4.1.22(c) 200℃各莫耳比樣品之能帶間隙圖譜 70圖 4.1.23(a) 改變鉍矽莫耳比(pH值固定13、溫度固定250℃)各樣品DRS圖 71圖 4.1.23(b) 250℃各莫耳比樣品之外觀顏色 71圖 4.1.23(c) 250℃各莫耳比樣品之能帶間隙圖譜 72圖 4.2.1(a) 150℃Bi2SiO5晶型矽酸鉍照射可見光降解結晶紫染料水溶液(crystal violet dye)之光催化速率 74圖 4.2.1(b) 150℃Bi2SiO5晶型矽酸鉍降解結晶紫染料水溶液之反應速率常數和R2值 75圖 4.2.1(c) 200℃Bi2SiO5晶型矽酸鉍照射可見光降解結晶紫染料水溶液(crystal violet dye)之光催化速率 76圖 4.2.1(d) 200℃Bi2SiO5晶型矽酸鉍降解結晶紫染料水溶液之反應速率常數和R2值 77圖 4.2.1(e) 250℃Bi2SiO5晶型矽酸鉍降解結晶紫染料水溶液之光催化速率 78圖 4.2.1(f) 250℃Bi2SiO5晶型矽酸鉍降解結晶紫染料水溶液之反應速率常數和R2值 79圖 4.2.2(a) Bi4Si3O12晶型矽酸鉍降解結晶紫染料水溶液之光催化速率 80圖 4.2.2(b) Bi4Si3O12晶型矽酸鉍降解結晶紫染料水溶液之反應速率常數和R2值 81圖 4.2.3(a) Bi12SiO20晶型矽酸鉍降解結晶紫染料水溶液之光催化速率 82圖 4.2.3(b) Bi12SiO20晶型矽酸鉍降解結晶紫染料水溶液之反應速率常數和R2值 83圖 4.2.4(a) Bi2SiO5、Bi4Si3O12、Bi12SiO20三種晶型矽酸鉍降解結晶紫染料水溶液之光催化速率 85圖 4.2.4(b) Bi2SiO5、Bi4Si3O12、Bi12SiO20三種晶型矽酸鉍降解結晶紫染料水溶液之反應速率常數和R2值 86
圖 4.3.1不同重量百分比Bi2SiO5/g-C3N4之圖譜 88
圖 4.3.2(a) 單純Bi2SiO5 (鉍:矽=2:1,pH=13,合成溫度=150oC) 樣品形貌及EDS 90圖 4.3.2(b) 單純g-C3N4樣品形貌及EDS 90圖 4.3.2(c) 1wt.% Bi2SiO5/g-C3N4樣品形貌及EDS 90圖 4.3.2(d) 5wt.% Bi2SiO5/g-C3N4樣品形貌及EDS 91圖 4.3.2(e) 7wt.% Bi2SiO5/g-C3N4樣品形貌及EDS 91圖 4.3.2(f) 10wt.% Bi2SiO5/g-C3N4樣品形貌及EDS 91圖 4.3.2(g) 20wt.% Bi2SiO5/g-C3N4樣品形貌及EDS 92圖 4.3.2(h) 50wt.% Bi2SiO5/g-C3N4樣品形貌及EDS 92圖 4.3.3(a) 各重量百分比之Bi2SiO5/g-C3N4複合光觸媒照射可見光降解結晶紫染料水溶液之光催化速率圖 94圖 4.3.3(b) 各重量百分比之Bi2SiO5/g-C3N4複合光觸媒照射可見光降解結晶紫染料水溶液之反應速率常數和R2值 94圖 4.3.4(a) 10wt.%Bi2SiO5/g-C3N4、Bi2SiO5、g-C3N4光催化實驗數據比較圖 96圖 4.3.4(b) 10wt.%Bi2SiO5/g-C3N4、Bi2SiO5、g-C3N4之反應速率常數和R2 96圖 4.3.5 10wt.%Bi2SiO5/g-C3N4樣品之TEM影像 98圖 4.3.6(a) 10wt.%Bi2SiO5/g-C3N4、Bi2SiO5、g-C3N4之DRS比較圖 99圖 4.3.6(b) 各樣品之外觀顏色 99圖 4.3.6(c) 各樣品之能帶間隙圖譜............................................................100圖 4.3.7(a) Bi2SiO5 (b) g-C3N4 (c) 10wt.%Bi2SiO5/g-C3N4之等溫氮氣吸脫附圖及孔徑分佈圖..........................................................................................101圖 4.3.8(a) g-C3N4、Bi2SiO5和Bi2SiO5/g-C3N4樣品的XPS全譜圖.............104
圖 4.3.8(b) C 1s高解析光譜圖......................................................................104
圖 4.3.8(c) N 1s高解析光譜圖..............................................................105
圖 4.3.8(d) O 1s高解析光譜圖..............................................................105
圖 4.3.8(e) Bi4f高解析光譜圖...............................................................106
圖 4.3.8(f) Si2p高解析光譜圖...............................................................106
圖 4.3.9(a) DMPO․OH EPR圖譜.......................................................107
圖 4.3.9(b) DMPO․O2- EPR圖譜........................................................108
圖 4.3.10(a)添加不同的自由基移除劑之降解結晶紫染料水溶液速率..............................................................................................................109 圖 4.3.10(b) 添加不同自由基移除劑之降解結晶紫染料水溶液速率圓柱圖..........................................................................................................110
圖 4.3.11 Bi2SiO5、g-C3N4、Bi2SiO5/g-C3N4之PL光譜圖......................112
圖 4.3.12(a) g-C3N4的UPS圖................................................................113
圖 4.3.12(b) Bi2SiO5的UPS圖.................................................................114
圖 4.3.13 10wt%Bi2SiO5/g-C3N4複合光觸媒回收之光催化降解效率圖..............................................................................................................115
圖 4.3.14 Bi2SiO5/g-C3N4光催化反應機制示意圖............................116

【1】H. Shu, M. Chang, Decolorization effects of six azo dyes by O, UV/O and UV/HO processes, Dyes and Pigments, 65 (2005) 25-31.
【2】D.P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K.M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Grätzel, M.K. Nazeeruddin, Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications, Journal of the American Chemical Society, 130 (2008) 6259-6266.
【3】S. Norman. A Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments (2nd Edition) : By H. Zollinger, published by VCH, Cambridge. Journal of Photochemistry and Photobiology A-chemistry, 1992, 67, 385-386.
【4】A.R. Khataee, M.N. Pons, O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: Influence of dye molecular structure, Journal of Hazardous Materials, 168 (2009) 451-457.
【5】C. Pan, J. Wu, Y. Wang, D. Li, Y. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly, Advanced Functional Materials, 22 (2012) 1518-1524.
【6】S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells, 77 (2003) 65-82.
【7】Y.R. Jiang, H.P. Lin, W.H. Chung, Y.M. Dai, W.Y. Lin, C.C. Chen, Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet, Journal of Hazardous Materials, 283 (2015) 787-805.
【8】T. Gao, Z. Chen, Y. Zhu, F. Niu, Q. Huang, L. Qin, X. Sun, Y. Huang, Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property, Materials Research Bulletin, 59 (2014) 6-12.
【9】Y. Nosaka, M. Matsushita, J. Nishino, A.Y. Nosaka, Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds, Science and Technology of Advanced Materials, 6 (2005) 143-148.
【10】周尚毅,台中教育大學科學教育研究所碩士論文(2015)
【11】林禾弁,台中教育大學科學教育研究所碩士論文(2015)
【12】Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, Zinc germanium oxynitride as aphotocatalyst for overall water splitting under visible light, Journal of Physical Chemistry C, 111 (2007) 1042-1048.2
【13】K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting, Journal of the American Chemical Society, 127 (2005) 8286-8287.
【14】X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nature Materials, 8 (2009) 76-80.
【15】N. Huang, Z. Yi, Enhanced ethylene photodegradation performance of g-C3N4-Ag3PO4 composites with direct Z-scheme configuration, Chemistry-A European Journal, 20 (2014) 17590-17596.
【16】S. Chlogl, M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, Journal of Materials Chemistry, 18 (2008) 4893-4908.
【17】J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Design of a direct Z-scheme photocatalyst:preparation and characterization of Bi2O3/g-C3N4 with high visible light activity, Journal of Hazardous Materials, 280 (2014) 713-722.
【18】F. Dong, L.W. Wu, Y.J. Sun, M. Fu, Z.B. Wu, S.C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21 (2011) 15171-15174.
【19】S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuri, 26 (2010) 3894-3901.
【20】S. Jana, M.K. Purkait, K. Mohanty, Removal of crystal violet by advanced oxidation and microfiltration, Applied Clay Science, 50 (2010) 337-341.
【21】Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: A review ,Nanoscale (2014)
【22】J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal, Chemical Engineering Journal, 185–186 (2012) 91-99.
【23】S. Shenawi-Khalil, V. Uvarov, Y. Kritsman, E. Menes, I. Popov, Y. Sasson, A new family of BiO(ClxBr1-x) visible light sensitive photocatalysts, Catalysis Communications, 12 (2011) 1136-1141.
【24】W. Zhu, Z. Yang, L. Wang, Application of ferrous-hydrogen peroxide for the treatment of H-acid manufacturing process wastewater, Water Research, 30 (1996) 2949-2954.
【25】Triarylmethane and diarylmethane dyes, in: Ullmann’s encyclopedia of industrial chemistry. Part A27, sixth ed., Wiley-VCH, NewYork, 2001.
【26】R.M. El-Shishtawy, S.H. Nassar, N.S.E. Ahmed, Anionic colouration of acrylic fibre. Part II: Printing with reactive, acid and direct dyes, Dyes and Pigments, 74 (2007) 215-222.
【27】Y.F. Sasaki, S. Kawaguchi, A. Kamaya, M. Ohshita, K. Kabasawa, K. Iwama, K. Taniguchi, S. Tsuda. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Research, 2002, 519, 103-119.
【28】S. Srivastava, R. Sinha, D. Roy. Toxicological effects of malachite green. Aquatic Toxicology, 2004, 66, 319-329.
【29】W. Azmi, R.K. Sani, U.C. Banerjee. Biodegradation of triphenylmethane dyes. Enzyme and Microbial Technology, 1998, 22, 185-191.
【30】T. Gessner, U. Mayer. Triarylmethane and Diarylmethane Dyes. Encyclopedia of Industrial Chemistry. 2000.
【31】H. Xie, D. Shen, X. Wang, G. Shen, Microwave hydrothermal synthesis and visible-light photocatalytic activity of Bi2WO6 nanoplates. Materials Chemistry and Physics, 103 (2007) 334-339.
【32】H. Selcuk. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments, 2005, 64, 217-222.
【33】I. Arslan-Alaton, Degradation of a commercial textile biocide with advanced oxidation processes and ozone, Journal of Environmental Management, 82 (2007) 145-154.
【34】C. Tang, V. Chen. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor. Water Research, 2004, 38, 2775-2781.
【35】李中光,劉新校,陳昱峰,吳孟昌,劉佳雯 Fenton氧化法在處理生物難降解有機廢水上之應用,2006
【36】K. Honda, A. Fujishima. Electrochemical photolysis of water at a semiconductor electrode. Nature 238(1972) .
【37】Ling Zhang, Wenzhong Wang∗, Songmei Sun, Jiehui Xu, Meng Shang, Jia Ren. Hybrid Bi2SiO5 mesoporous microspheres with light response for environment decontamination. Applied Catalysis B: Environmental 100 (2010) 97–101
【38】C. Cui, Y. Wang, D. Liang, W. Cui, H. Hu, B. Lu, S. Xu,X. Li, C. Wang, Yu Yang. Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Agheterostructure photocatalyst with enhanced photocatalytic activityand stability under visible light. Applied Catalysis B: Environmental (2014) 150-160
【39】B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, W. Schnick Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride:  Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies. Journal of the American Chemical Society 125 (2003) 10288-10300.
【40】林麗娟,“X光繞射原理及其應用”,工業材料,86期,1997
【41】羅聖全,“研發奈米科技的基本工具之一 電子顯微鏡介紹 – TEM” ,2008
【42】X. Xiao, C. Liu, R. Hu, X. Zuo, J. Nan, L. Li, L. Wang, Oxygen-rich bismuth oxyhalides:generalized one-pot synthesis, band structures and visible-light photocatalytic properties, Journal of Materials Chemistry, 22 (2012) 22840-22843.
【43】Y.J. Wang, R. Shi, J. Lin, Y.F. Zhu. Significant photocatalytic enhancement in methylene blue degradation of TiO2 photocatalysts via graphene-like carbon in situ hybridization. Applied Catalysis B: Environmental 100 (2010) 179-183.
【44】 Xiang Feng, Xiang Qi, Jun Li, Liwen Yang, Mengchun Qiu, Jinjie Yin, Fang Lu, Jianxin Zhong. Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays , Applied Surface Science 257 (2011) 5571–5575
【45】H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation, Chemical Engineering Journal, 218 (2013) 183-190.
【46】J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis, ACS Catalysis, 2 (2012) 940-948.
【47】M. Xu, L. Han, S. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostuctured photocatalysts with enhanced visible-light photocatalytic activity, Applied materials & Interfaces, 5 (2013) 12533-12540.
【48】Y. He, J. Cai, T. Li, Y. Wu, H. Lin, L. Zhao, M. Luo, Efficient degradation of RhB over GdVO4/g-C3N4 composites under visible-light irradiation, Chemical Engineering Journal, 215-216 (2013) 721-730.
【49】N. Nakada, S. Takizawa, h. Takada, Evaluation of pharmaceuticals and personal care products as watersoluble molecular markers of sewage, Environmental Science and Technology, 42 (2008) 6347-6353.
【50】L. Ge, C. Han, Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity, Applied Catalysis B: Environmental, 117-118 (2012) 268-271.
【51】J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, Design of a direct Z-scheme photocatalyst:preparation and characterization of Bi2O3/g-C3N4 with high visible light activity, Journal of Hazardous Materials, 280 (2014) 713-722.
【52】H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Photocatalytic degradation of 2,4,6-trichlorophenol over g-C3N4 under visible light irradiation, Chemical Engineering Journal, 218 (2013) 183-190.
【53】J. Zhang, M. Zhang, G. Zhang, X. Wang, Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis, ACS Catalysis, 2 (2012) 940-948.
【54】M. Xu, L. Han, S. Dong, Facile fabrication of highly efficient g-C3N4/Ag2O heterostuctured photocatalysts with enhanced visible-light photocatalytic activity, Applied materials & Interfaces, 5 (2013) 12533-12540.
【55】F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers, Journal of Hazardous Materials, 219-220 (2012) 26-34.
【56】K.L. Li, W.W. Lee, C.S. Lu, Y.M. Dai, S.Y. Chou, H.L. Chen, H.P. Lin, C.C. Chen, Synthesis of BiOBr, Bi3O4Br, and Bi12O17Br2 by controlled hydrothermal method and their photocatalytic properties, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 2688-2697.
【57】F. Teixeira,R. Berjoan ,G. Peraudeau,D. Perarnau,Solar preparation of SiOx (x~1) nanopowders from silicon vaporisation on a ZrO2 pellet. XPS and photoluminescence characterisation, Solar Energy 78 (2005) 763–771
【58】Y. Huo, J. Zhang, M. Miao, Y. Jin, Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances, Applied Catalysis B: Environmental, 111-112 (2012) 334-341.
【59】S.C. Yan, S.B. Lv, Z.S. Li, Z.G. Zou, Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Transactions, 39 (2010) 1488-1491.
【60】L.S. Zhang, K.H. Wong, H.Y. Yip, C. Hu, J.C. Yu, C.Y. Chan, P.K. Wong, Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light :the role of diffusing hydroxyl radicals, Environmental Science &Technology, 44 (2010) 1392-1398.
【61】M. Yin, Z. Li, J. Kou, Z. Zou, Mechanism investigation of visible light induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system, Environmental Science & Technology, 43 (2009) 8361-8366.
【62】G. Li, K.H. Wong, X. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong, Degradation of acid orange 7 using magnetic AgBr under visible light: the roles of oxidizing species, Chemosphere, 76 (2009) 1185-1191.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top