跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊承叡
研究生(外文):Cheng-Ruei Yang
論文名稱:全數位自動校正智慧型溫度偵測晶片
論文名稱(外文):All-Digital Smart Temperature Sensor with Self-Calibration in 65nm CMOS Technology
指導教授:鍾菁哲
指導教授(外文):Ching-Che Chung
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:74
中文關鍵詞:智慧型溫度計動態溫度管理自我校正
外文關鍵詞:smart temperature sensorself-calibrationdynamic thermal manage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1075
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
在此論文中,我們針對全數位智慧型溫度偵測晶片的設計,提出了討論以及架構的改進,更進步一步在溫度計的校正部份加入了自動校正的新方法,使我們溫度偵測晶片成為一個擁有自動校正能力的溫度計,稱之為全數位自動校正智慧型溫度偵測晶片。
論文中包含傳統慧型溫度偵測晶片中的重要元件介紹,並對各種元件架構的優缺點來做分析,討論是否適合使用在我們的晶片設計中。此外會介紹傳統溫度計校正的方法與缺點,以及為什麼我們需要擁有自動校正能力的溫度偵測晶片;而在介紹自動校正的部份,分為溫度本身的校正以及製程漂移的補償兩個部份,並會依次介紹其架構以及流程。
論文最後的部份統整了我們三個設計的成果:全數位智慧型溫度偵測測試晶片、完整版的全數位智慧型溫度偵測晶片和在可编程邏輯閘陣列上設計全數位智慧型溫度偵測器;由於論文中部份的技術並沒有包含在第一個設計中,所以經由比較第一與第二個設計的數據,可以很明顯看出效果。最後第三個設計主要是針對系統單晶片的整合來做開發,我們將設計好的溫度偵測電路燒錄到可编程邏輯閘陣列,並透過匯流排和 ARM 中央處理器來做整合與溝通,並利用開發版上的介面來做溫度呈現。
在這項研究中,我們在65奈米製程下呈現了具有小面積、低功率消耗的全數位智慧型溫度偵測晶片,而且完全不需要手動的校正,大幅降低了全數位智慧型溫度偵測晶片製作上的成本。
In this thesis, we make a discussion and architecture improvements that focus on the design of all-digital smart temperature sensor. Additionally, the method of auto-calibration has been joined into our design to make the sensor to be automatic in calibrating operations. And so we call it an all-digital smart temperature sensor with auto-calibration.
This thesis will introduce the critical components in smart temperature sensor and analysis the advantages or disadvantages of each architecture. Besides, we talk about the conventional calibration method of smart temperature sensor and why auto-calibrating method is in need, and we present the architecture and operation flows of the temperature calibration and the process variations compensation.
Finally, we summarize our three designs in the thesis: the all-digital temperature sensor test chip, the full-fledged version all-digital smart temperature sensor and the all-digital smart temperature sensor on FPGA board. Because the first test key did not include all the techniques in the thesis, by comparing the first and second designs, we can clearly see the improvement of our novel method of calibration and compensation. The last design is focus on the integration with SoC system. We implement a simpler all-digital smart temperature sensor with the FPGA board and integrate the sensor with ARM CPU by the AHB, and then use the device on FPGA board to display the temperature information.
In this research, we have presented a novel fully digital CMOS smart temperature sensor with 65nm CMOS technology. It has tiny chip area and low power consumption, and the traditional two temperature points calibration can be eliminated to reduce the testing cost of sensor in mass production.
Chapter 1 Introduction 1
1.1 Introduction to Smart Temperature Sensor 1
1.2 Motivation 1
1.3 Thesis Organization 4

Chapter 2 Proportional to Absolute Temperature (PTAT) Circuit 6
2.1 Bipolar Junction Transistor (BJT) Based PTAT Circuit 6
2.2 Delay-Line Based PTAT Circuit 7
2.3 Oscillator Based Inverse PTAT Circuit 10
2.4 Summary 12

Chapter 3 All-Digital Smart Temperature Sensor Circuit 13
3.1 The Proposed All-Digital Smart Temperature Sensor Overview 13
3.2 Proportional to Absolute Temperature (PTAT) Pulse Generator 15
3.3 Time-to-Digital Converter 17
3.3.1 Clock Sampling TDC 17
3.3.2 Vernier Delay Line Based TDC 18
3.3.3 Ring Based TDC 19
3.3.4 PVT Compensated Ring Based TDC 21
3.4 Summary 25

Chapter 4 Auto-Calibration Technology in Smart Temperature Sensor 26
4.1 Thermometer Calibration 26
4.1.1 Conventional Calibration Method 26
4.1.2 Auto-Calibration Method 27
4.1.3 Auto-Calibration Method with Dual-Slope 31
4.2 Compensation for Process Variations 34
4.3 Summary 37

Chapter 5 Implementations and Measurement Results 38
5.1 All-Digital Smart Temperature Sensor Test Chips 38
5.1.1 Specification 38
5.1.2 Simulation Result 40
5.1.3 Measurement Result 42
5.1.4 Comparisons of Recent Smart Temperature Sensors 45
5.2 The Full-Fledged Version All-Digital Smart Temperature Sensor 46
5.2.1 Specification 46
5.2.2 Simulation Result 48
5.2.3 Measurement Result 50
5.2.4 Comparisons of Recent Smart Temperature Sensors 52
5.3 All-Digital Smart Temperature Sensor Implemented with FPGA. 54
5.3.1 All-Digital Smart Temperature Sensor in CCU SoC Criti-Core Integration Project 54
5.3.2 Implementations on FPGA 55
5.3.3 Corresponding Design with ARM CPU 56
5.3.4 Criti-Core Project Demo 57
5.4 Summary 59

Chapter 6 Conclusions and Future Work 60

Reference 62
[1]“Mercury-in-glass thermometer,” From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mercury-in-glass_thermometer.
[2]D. C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, P. M. Harvey, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley and D. L. Stasiak, “Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor,” in IEEE Journal of Solid-State Circuits, Vol. 41, pp. 179–196, Jan. 2006.
[3]S. Velusamy, W. Huang, J. Lach, M. Stan and K. Skadron, “Monitoring temperature in FPGA based SoCs,” in Proceedings of IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 634-637, Oct. 2005.
[4] R. Mukherjee and S.O. Memik, “Systematic temperature sensor allocation and placement for microprocessors,” in Proceedings of ACM/IEEE Design Automation Conference, pp. 542-547, Jul. 2006.
[5] D. Brooks and M. Martonosi, “Dynamic thermal management for high-performance microprocessors,” in Proceedings of International Symposium on High-Performance Computer Architecture, Feb. 2001.
[6] K. Skadron, T. Abdelzaher and M.R. Stan, “Control theoretic techniques and thermal-RC modeling for accurate and localized dynamic thermal management,” in Proceedings of International Symposium on High-Performance Computer Architecture, pp. 17-28, Feb. 2002.
[7]J. Hong, K. Hang, P. Pong, J.D. Pan, J. Kang and K.C. Wu, “An LLC-OCV methodology for statistic timing analysis,” in Proceedings of International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp 1-4, Apr. 2007.
[8]K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H.C. Ngo, B. C. Brock, K. I. Ishii, T. Y. Nguyen and J. L. Burns, “A 32-bit powerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling,” in IEEE Journal of Solid-State Circuits, Vol. 37, no. 11, Nov. 2002.
[9]J. S. Lee, K. Skadron and S. W. Chung, “Predictive temperature-aware DVFS,” in IEEE Transactions on Computers, Vol. 59, pp. 178-133, Jan. 2010.
[10]K. Sankaranaryanan, M. Stan and K. Skadron, “A case for thermal-aware floorplanning at the micro-architectural level,” in Journal of Instruction-Level Parallelism, pp. 1-16, Oct. 2005.
[11]W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron and M.R. Stan, “HotSpot: a compact thermal modeling methodology for early-stage VLSI design,” in IEEE Transactions on Very Large Scale Integration (VLSI) System, Vol.14, pp. 501-513, May 2006.
[12]Y. Li, K. Skadron, D. Brooks and Z. Hu, “Performance, energy, and thermal considerations for SMT and CMP architectures,” in Proceedings of International Symposium on High-Performance Computer Architecture, pp. 71-82, Feb. 2005.
[13] M. A. P. Pertijs, K.A.A Makinwa and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from –55°C to 125°C,” in IEEE Journal of Solid-State Circuits, Vol. 40, pp. 2805-2815, Dec. 2005.
[14] P. Chen, C.C. Chen, C.C. Tsai and W.F. Lu, ”A time-to-digital-converter-based CMOS smart temperature sensor,” in IEEE Journal of Solid-State Circuits, Vol. 40, pp. 1642-1648, Aug. 2005.
[15] P. Chen, M.C. Shie, Z.Y. Zheng, Z.F. Zheng and C.Y. Chu, “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” in IEEE Transactions on Circuits and Systems I, Vol. 54, pp. 2661 – 2668, Dec. 2007.
[16] P. Chen, C.C. Chen, Y.H. Peng, K.M. Wang and Y.S. Wang, “A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of −0.4°C ~ +0.6°C over a 0°C to 90°C range,” in IEEE Journal of Solid-State Circuits, Vol. 45, pp. 600-609, Mar. 2010.
[17] K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha and D. Ham, “Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring,” in ISSCC Dig Tech. Papers, pp.68-70,Feb. 2009.
[18]J.N. Lin, J.L. Chen, J.H. Pu, L.L. Lai, J.M. Luo and M.H. Chiang, “奈米範圍之場效電晶體臨界電壓對摻雜質濃度變異的敏感度,” in Bulletin of College of Engineering National Ilan University, Feb. 2006.
[19] A. Bakker and J.H. Huijsing, “CMOS smart temperature sensor an overview,” in Proceedings of IEEE Sensors, pp. 1423-1427, Jun. 2002.
[20]T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996.
[21]I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Transactions on Circuit and System I, Vol. 48, no. 7, pp. 876–884, Jul. 2001.
[22] I. M. Filanovsky, “Voltage reference using mutual compensation of mobility and threshold voltage temperature effects,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, May 2000, pp. 197–200.
[23] P. Chen, S. I. Liu and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” in IEEE Transactions on Circuits and System II, Vol. 47, no. 9, pp. 954–8, Sep. 2000.
[24] P. Dudek, S. Szczepanski and J. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a vernier delay line”, IEEE Journal of Solid- State Circuits, Vol. 35, pp. 240-247, Feb. 2000.
[25]A. S. Yousif and J. W. Haslett, “A fine resolution TDC architecture for next generation PET imaging,” in IEEE Transactions on Nuclear Science, Vol. 54, pp. 1574-1582, Oct. 2007.
[26] C.C. Chen, P. Chen, C.S. Hwang and W. Chang, “A precise cyclic CMOS time-to-digital converter with low thermal sensitivity,” in IEEE Transactions on Nuclear Science, Vol. 52, pp.834-838, Aug. 2005.
[27]P. Chen, C.C. Chen, J.C. Zheng and Y.S. Shen, “A PVT insensitive vernier-based time-to-digital converter with extended input range and high accuracy,” in IEEE Transaction on Nuclear Science, Vol. 54, pp. 294-302, Apr 2007.
[28] K.H. Choi, J.B. Shin, J.Y. Sim and H.J. Park, ”An interpolating digitally-controlled oscillator for a wide-range all-digital PLL,” in IEEE Transaction on Circuits and System I, Reg. Papers, Vol. 56, no. 9, pp. 2055-2063, Sep. 2009.
[29]G.L. Solbrekken and C.P. Chiu, “Calibration of resistance type die level temperature sensors using a single temperature technique,” in IEEE Transactions on Components and Packaging Technologies, Vol. 23, no. 1, pp. 40-46, Mar. 2000.
[30] M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa and J.H. Huijsing, “Voltage calibration of smart temperature sensors,” in Proceedings of IEEE Sensors, Nov. 2008, pp. 756–759.
[31]M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa and J.H. Huijsing, “Low-cost calibration techniques for smart temperature sensors,” in IEEE Sensors Journal, Vol. 10, no. 6, pp.1098-1105, Jun. 2010.
[32]C. C. Chung and C. R. Yang, “An all-digital smart temperature sensor with auto-calibration in 65nm CMOS technology,” in Proceeding of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 4089-4092, May. 2010
[33]“Versatile platform baseboard for ARM926EJ-S user guide,” ARM, http://www.arm.com/pdfs/DUI0224B_vpb926ejs_ug.pdf
[34]ARM limited. AMBA Specification, Rev. 2.0, May 1999.
[35]E. Saneyoshi, K. Nose, M. Kajita, and M. Mizuno, “A 1.1V 35?m ? 35?m thermal sensor with supply voltage sensitivity of 2 ?C/10%- supply for thermal management on the SX-9 supercomputer,” in Proceedings of IEEE SoVC, Jun. 2008, pp. 152–153.
[36]“Hysteresis phenomenon,” From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Hysteresis
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top