|
[1]“Mercury-in-glass thermometer,” From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Mercury-in-glass_thermometer. [2]D. C. Pham, T. Aipperspach, D. Boerstler, M. Bolliger, R. Chaudhry, D. Cox, P. Harvey, P. M. Harvey, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Pham, J. Pille, S. Posluszny, M. Riley and D. L. Stasiak, “Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor,” in IEEE Journal of Solid-State Circuits, Vol. 41, pp. 179–196, Jan. 2006. [3]S. Velusamy, W. Huang, J. Lach, M. Stan and K. Skadron, “Monitoring temperature in FPGA based SoCs,” in Proceedings of IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 634-637, Oct. 2005. [4] R. Mukherjee and S.O. Memik, “Systematic temperature sensor allocation and placement for microprocessors,” in Proceedings of ACM/IEEE Design Automation Conference, pp. 542-547, Jul. 2006. [5] D. Brooks and M. Martonosi, “Dynamic thermal management for high-performance microprocessors,” in Proceedings of International Symposium on High-Performance Computer Architecture, Feb. 2001. [6] K. Skadron, T. Abdelzaher and M.R. Stan, “Control theoretic techniques and thermal-RC modeling for accurate and localized dynamic thermal management,” in Proceedings of International Symposium on High-Performance Computer Architecture, pp. 17-28, Feb. 2002. [7]J. Hong, K. Hang, P. Pong, J.D. Pan, J. Kang and K.C. Wu, “An LLC-OCV methodology for statistic timing analysis,” in Proceedings of International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp 1-4, Apr. 2007. [8]K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H.C. Ngo, B. C. Brock, K. I. Ishii, T. Y. Nguyen and J. L. Burns, “A 32-bit powerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling,” in IEEE Journal of Solid-State Circuits, Vol. 37, no. 11, Nov. 2002. [9]J. S. Lee, K. Skadron and S. W. Chung, “Predictive temperature-aware DVFS,” in IEEE Transactions on Computers, Vol. 59, pp. 178-133, Jan. 2010. [10]K. Sankaranaryanan, M. Stan and K. Skadron, “A case for thermal-aware floorplanning at the micro-architectural level,” in Journal of Instruction-Level Parallelism, pp. 1-16, Oct. 2005. [11]W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron and M.R. Stan, “HotSpot: a compact thermal modeling methodology for early-stage VLSI design,” in IEEE Transactions on Very Large Scale Integration (VLSI) System, Vol.14, pp. 501-513, May 2006. [12]Y. Li, K. Skadron, D. Brooks and Z. Hu, “Performance, energy, and thermal considerations for SMT and CMP architectures,” in Proceedings of International Symposium on High-Performance Computer Architecture, pp. 71-82, Feb. 2005. [13] M. A. P. Pertijs, K.A.A Makinwa and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from –55°C to 125°C,” in IEEE Journal of Solid-State Circuits, Vol. 40, pp. 2805-2815, Dec. 2005. [14] P. Chen, C.C. Chen, C.C. Tsai and W.F. Lu, ”A time-to-digital-converter-based CMOS smart temperature sensor,” in IEEE Journal of Solid-State Circuits, Vol. 40, pp. 1642-1648, Aug. 2005. [15] P. Chen, M.C. Shie, Z.Y. Zheng, Z.F. Zheng and C.Y. Chu, “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” in IEEE Transactions on Circuits and Systems I, Vol. 54, pp. 2661 – 2668, Dec. 2007. [16] P. Chen, C.C. Chen, Y.H. Peng, K.M. Wang and Y.S. Wang, “A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of −0.4°C ~ +0.6°C over a 0°C to 90°C range,” in IEEE Journal of Solid-State Circuits, Vol. 45, pp. 600-609, Mar. 2010. [17] K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha and D. Ham, “Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring,” in ISSCC Dig Tech. Papers, pp.68-70,Feb. 2009. [18]J.N. Lin, J.L. Chen, J.H. Pu, L.L. Lai, J.M. Luo and M.H. Chiang, “奈米範圍之場效電晶體臨界電壓對摻雜質濃度變異的敏感度,” in Bulletin of College of Engineering National Ilan University, Feb. 2006. [19] A. Bakker and J.H. Huijsing, “CMOS smart temperature sensor an overview,” in Proceedings of IEEE Sensors, pp. 1423-1427, Jun. 2002. [20]T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996. [21]I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Transactions on Circuit and System I, Vol. 48, no. 7, pp. 876–884, Jul. 2001. [22] I. M. Filanovsky, “Voltage reference using mutual compensation of mobility and threshold voltage temperature effects,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, May 2000, pp. 197–200. [23] P. Chen, S. I. Liu and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” in IEEE Transactions on Circuits and System II, Vol. 47, no. 9, pp. 954–8, Sep. 2000. [24] P. Dudek, S. Szczepanski and J. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a vernier delay line”, IEEE Journal of Solid- State Circuits, Vol. 35, pp. 240-247, Feb. 2000. [25]A. S. Yousif and J. W. Haslett, “A fine resolution TDC architecture for next generation PET imaging,” in IEEE Transactions on Nuclear Science, Vol. 54, pp. 1574-1582, Oct. 2007. [26] C.C. Chen, P. Chen, C.S. Hwang and W. Chang, “A precise cyclic CMOS time-to-digital converter with low thermal sensitivity,” in IEEE Transactions on Nuclear Science, Vol. 52, pp.834-838, Aug. 2005. [27]P. Chen, C.C. Chen, J.C. Zheng and Y.S. Shen, “A PVT insensitive vernier-based time-to-digital converter with extended input range and high accuracy,” in IEEE Transaction on Nuclear Science, Vol. 54, pp. 294-302, Apr 2007. [28] K.H. Choi, J.B. Shin, J.Y. Sim and H.J. Park, ”An interpolating digitally-controlled oscillator for a wide-range all-digital PLL,” in IEEE Transaction on Circuits and System I, Reg. Papers, Vol. 56, no. 9, pp. 2055-2063, Sep. 2009. [29]G.L. Solbrekken and C.P. Chiu, “Calibration of resistance type die level temperature sensors using a single temperature technique,” in IEEE Transactions on Components and Packaging Technologies, Vol. 23, no. 1, pp. 40-46, Mar. 2000. [30] M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa and J.H. Huijsing, “Voltage calibration of smart temperature sensors,” in Proceedings of IEEE Sensors, Nov. 2008, pp. 756–759. [31]M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa and J.H. Huijsing, “Low-cost calibration techniques for smart temperature sensors,” in IEEE Sensors Journal, Vol. 10, no. 6, pp.1098-1105, Jun. 2010. [32]C. C. Chung and C. R. Yang, “An all-digital smart temperature sensor with auto-calibration in 65nm CMOS technology,” in Proceeding of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 4089-4092, May. 2010 [33]“Versatile platform baseboard for ARM926EJ-S user guide,” ARM, http://www.arm.com/pdfs/DUI0224B_vpb926ejs_ug.pdf [34]ARM limited. AMBA Specification, Rev. 2.0, May 1999. [35]E. Saneyoshi, K. Nose, M. Kajita, and M. Mizuno, “A 1.1V 35?m ? 35?m thermal sensor with supply voltage sensitivity of 2 ?C/10%- supply for thermal management on the SX-9 supercomputer,” in Proceedings of IEEE SoVC, Jun. 2008, pp. 152–153. [36]“Hysteresis phenomenon,” From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Hysteresis
|