|
1.Ohlander, A., et al., Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. Lab Chip, 2013. 13(11): p. 2075-82. 2.Yu, I.F., et al., A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip, 2014. 14(18): p. 3621-8. 3.Miralles, V., et al., A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications. Diagnostics, 2013. 3(1): p. 33-67. 4.Celle, C., et al., Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Research, 2012. 5(6): p. 427-433. 5.Kim, D., et al., Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon, 2013. 63: p. 530-536. 6.Sorel, S., D. Bellet, and J.N. Coleman, Relationship between Material Properties and Transparent Heater Performance for Both Bulk-like and Percolative Nanostructured Networks. ACS Nano, 2014. 8(5): p. 4805-4814. 7.Wang, S., X. Zhang, and W. Zhao, Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires. Journal of Nanomaterials, 2013. 2013: p. 1-6. 8.Zhang, X., et al., Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon, 2014. 69: p. 437-443. 9.Kim, T., et al., Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters. Advanced Functional Materials, 2013. 23(10): p. 1250-1255. 10.von Meier, A., Electric Power Systems: A Conceptual Introduction. 2006: Wiley. 11.Bae, J.J., et al., Heat Dissipation of Transparent Graphene Defoggers. Advanced Functional Materials, 2012. 22(22): p. 4819-4826. 12.Ji, S., et al., Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small, 2014. 10(23): p. 4951-60. 13.洪文進、許登貴、萬明安、郭書瑋、蘇昭瑾, ITO 透明導電薄膜:從發展與應用到製備. Journal of the Chinese Chemical Society, 2005. 63(3): p. 409-418. 14.Minami, T., Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor Science and Technology, 2005. 20(4): p. S35-S44. 15.Hong, W., et al., Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications, 2008. 10(10): p. 1555-1558. 16.Zhang, D., et al., Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Letters, 2006. 6(9): p. 1880-1886. 17.Li, X., et al., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363. 18.Seong, B., et al., Metal-mesh based transparent electrode on a 3-D curved surface by electrohydrodynamic jet printing. Journal of Micromechanics and Microengineering, 2014. 24(9): p. 097002. 19.Sun, Y., et al., Crystalline Silver Nanowires by Soft Solution Processing. Nano Letters, 2002. 2(2): p. 165-168. 20.Sun, Y., et al., Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters, 2003. 3(7): p. 955-960. 21.Jiu, J., et al., Facile synthesis of very-long silver nanowires for transparent electrodes. Journal of Materials Chemistry A, 2014. 2(18): p. 6326. 22.De, S., et al., Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano, 2010. 4(12): p. 7064-7072. 23.Ahn, B.Y., et al., Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science, 2009. 323(5921): p. 1590-1593. 24.Bauer, C.A., F. Stellacci, and J.W. Perry, Relationship Between Structure and Solubility of Thiol-Protected Silver Nanoparticles and Assemblies. Topics in Catalysis, 2008. 47(1-2): p. 32-41. 25.Kang, J., et al., High-performance graphene-based transparent flexible heaters. Nano Lett, 2011. 11(12): p. 5154-8. 26.Woo Kim, H., et al., Versatile graphene nanocomposite microheater patterning for various thermoplastic substrates based on capillary filling and transfer molding. Applied Physics Letters, 2013. 102(10): p. 101907. 27.Gupta, R., et al., Spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surfaces. ACS Appl Mater Interfaces, 2014. 6(16): p. 13688-96. 28.Kwon, N., et al., Study on Ag mesh/conductive oxide hybrid transparent electrode for film heaters. Nanotechnology, 2014. 25(26): p. 265702. 29.Rao, K.D. and G.U. Kulkarni, A highly crystalline single Au wire network as a high temperature transparent heater. Nanoscale, 2014. 6(11): p. 5645-51. 30.Zschieschang, U., et al., Flexible Organic Circuits with Printed Gate Electrodes. Advanced Materials, 2003. 15(14): p. 1147-1151. 31.Bao, Z., et al., High-Performance Plastic Transistors Fabricated by Printing Techniques. Chemistry of Materials, 1997. 9(6): p. 1299-1301. 32.Ridley, B.A., B. Nivi, and J.M. Jacobson, All-Inorganic Field Effect Transistors Fabricated by Printing. Science, 1999. 286(5440): p. 746-749. 33.Tekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713. 34.Delaney, J.T., et al., A Practical Approach to the Development of Inkjet Printable Functional Ionogels—Bendable, Foldable, Transparent, and Conductive Electrode Materials. Macromolecular Rapid Communications, 2010. 31(22): p. 1970-1976. 35.Krebs, F.C., et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing—First public demonstration. Solar Energy Materials and Solar Cells, 2009. 93(4): p. 422-441. 36.Miller, S.M., S.M. Troian, and S. Wagner, Direct printing of polymer microstructures on flat and spherical surfaces using a letterpress technique. Journal of Vacuum Science & Technology B, 2002. 20(6): p. 2320-2327. 37.Pudas, M., et al., Gravure printing of conductive particulate polymer inks on flexible substrates. Progress in Organic Coatings, 2005. 54(4): p. 310-316. 38.Rayleigh, L., On the capillary phenomena of jets. Proceedings of the Royal Society of London, 1879. 29(196-199): p. 71-97. 39.Rayleigh, L., Further observations upon liquid jets, in continuation of those recorded in the Royal Society''s'' Proceedings'' for March and May, 1879. Proceedings of the Royal Society of London, 1882. 34(220-223): p. 130-145. 40.Grove, M., et al., Color flat panel manufacturing using ink jet technology. Display Works, 1999. 99. 41.Shah, V.G. and D.J. Hayes, Trimming and printing of embedded resistors using demand-mode ink-jet technology and conductive polymer. IPC Printed Circuit Expo, 2002: p. 1-5. 42.Chen, S.P., et al., Inkjet Printed Conductive Tracks for Printed Electronics. ECS Journal of Solid State Science and Technology, 2015. 4(4): p. P3026-P3033. 43.Wu, J.-T., et al., Direct ink-jet printing of silver nitrate–silver nanowire hybrid inks to fabricate silver conductive lines. Journal of Materials Chemistry, 2012. 22(31): p. 15599. 44.Chen, P.-H., W.-C. Chen, and S.H. Chang, Bubble growth and ink ejection process of a thermal ink jet printhead. International Journal of Mechanical Sciences, 1997. 39(6): p. 683-695. 45.Wijshoff, H., The dynamics of the piezo inkjet printhead operation. Physics Reports, 2010. 491(4–5): p. 77-177. 46.Dohnal, J. and F. Štěpanek, Inkjet fabrication and characterization of calcium alginate microcapsules. Powder Technology, 2010. 200(3): p. 254-259. 47.Bamfield, P., Chromic Phenomena : Technological Applications of Colour Chemistry 2ed. 2010: RSCPublishing. 48.Wei, X., et al., Thermo-solvatochromism of chloro-nickel complexes in 1-hydroxyalkyl-3-methyl-imidazolium cation based ionic liquids. Green Chemistry, 2008. 10(3): p. 296. 49.Wei, X., et al., Solar-thermochromism of Pseudocrystalline Nanodroplets of Ionic Liquid-NiIIComplexes Immobilized inside Translucent Microporous PVDF Films. Advanced Materials, 2009. 21(7): p. 776-780. 50.Torimoto, T., et al., New frontiers in materials science opened by ionic liquids. Adv Mater, 2010. 22(11): p. 1196-221. 51.Gu, C.-D. and J.-P. Tu, Thermochromic behavior of chloro-nickel(II) in deep eutectic solvents and their application in thermochromic composite films. RSC Advances, 2011. 1(7): p. 1220. 52.Vigolo, D., et al., A portable device for temperature control along microchannels. Lab Chip, 2010. 10(6): p. 795-8. 53.Selva, B., J. Marchalot, and M.-C. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics. Journal of Micromechanics and Microengineering, 2009. 19(6): p. 065002. 54.Jiao, Z., et al., Thermocapillary actuation of droplet in a planar microchannel. Microfluidics and Nanofluidics, 2007. 5(2): p. 205-214. 55.Liu, B.-T. and S.-X. Huang, Transparent conductive silver nanowire electrodes with high resistance to oxidation and thermal shock. RSC Adv., 2014. 4(103): p. 59226-59232. 56.Grego, S., et al., Development and evaluation of bend-testing techniques for flexible-display applications. Journal of the Society for Information Display, 2005. 13(7): p. 575-581. 57.Li, K.C., et al., Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detection. Biomicrofluidics, 2014. 8(6): p. 064109. 58.Wang, J.-H., et al., A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection. Sensors and Actuators B: Chemical, 2009. 141(1): p. 329-337. 59.Huang, C.C., Z.K. Kao, and Y.C. Liao, Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology. ACS Appl Mater Interfaces, 2013. 5(24): p. 12954-9.
|