跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝錦隆
研究生(外文):Chin-Lung Hsieh
論文名稱:雙相複合材料彈性常數與熱膨脹係數之研究
論文名稱(外文):Elastic and Thermal Expansion Constants of Two-Phase Composites
指導教授:段維新段維新引用關係
指導教授(外文):W. H. Tuan
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:84
中文關鍵詞:熱膨脹係數Al2O3-NiAl雙相複合材料單元體模型彈性常數泊松比
外文關鍵詞:Al2O3-NiAlunit cell modelthermal expansion coefficientElastic constantstwo-phase composites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究建立一個新的單元體模型(unit-cell model)描述雙相複合材料的彈性常數(包括彈性、體、剪切係數及泊松比)及熱膨脹係數,此單元體模型的預測結果與實驗數據及文獻上已有之理論模式進行比較,證實本單元體模型的可行性。
與多數均質單相材料比較,複合材料的彈性及熱膨脹性質的影響因素較為複雜,例如:複合材料內所含第二相的形狀、組成份、孔隙的大小與分佈、以及相界面的完整性等等,均嚴重影響複合材料的性質。除了材料微結構的複雜因素外,有關應力在複合材料內部傳遞的機制因未能清楚了解,導致無法獲得精確預測的複合材料彈性常數及熱膨脹係數,因此,本研究規劃以上下邊界的預測方法將彈性及熱膨脹性質可能的變化範圍予以涵蓋,模型主要的假設條件有:僅針對組成相具緊密結合之完全緻密複合材料,不考慮當複合材料如果受外力或受熱作用會導致相界面剝離的情況,這允許我們以巨觀角度進行探討,即假設複合材料所含的第二相大小是大於微觀結構尺寸,因此不需考慮原子級與差排力學等微觀情況,故可以直接用連續力學觀點進行複合材料性質模型的推導,同時假設所分析模型之大小是比第二相要大,因此複合材料性質可以用組成相的平均性質來表示。
本研究模型之目的是希望所獲得的預測結果可以涵蓋整個雙相複合材料性質的組成範圍,亦即可以包括所含第二相的含量從0到100體積百分率(vol.%)的複合材料,因為文獻上所能涵蓋整個組成範圍之實驗數據較不完整,所以本研究應用熱壓燒結準備一組NiAl的含量從0到100體積百分率之緻密化Al2O3-NiAl複合材料,分別以超音波技術及熱機械分析儀(TMA)量測其彈性常數及熱膨脹係數。
對於雙相複合材料,當第二相的含量逐漸地增加會使原本孤立狀之第二相產生互相連接,逐漸地使組成相形成各自連通之微觀結構,考慮此連通之微觀特性,本研究之單元體模型便假設所含之第二相的形狀為長條狀,並將雙相之間的應力與應變的隅合作用予以考慮。由模型預測得知雙相複合材料的彈性係數、泊松比以及熱膨脹係數均與組成相的彈性係數比值有密切關係,亦即第二相與基底相彈性係數的比值是這些性質的主要影響因素,所以有關影響某一溫度變化範圍之複合材料熱膨脹係數的結果,事實上是受彈性係數的比值的控制。
將Al2O3-NiAl複合材料的實驗數據及廣泛收集文獻上已有的雙相複合材料之實驗數據與本研究模型所獲得的預測結果進行比較,由實驗數據比較得知,證明本研究模型的預測具有合理的適用性。並與文獻上其他理論模式進行預測性質之比較,例如:用於預測彈性常數的Hashin-Shtrikman (H-S)模式、以及用於預測熱膨脹係數的Kerner 及 Schapery模式,經由比較結果顯示,當彈性係數的比值小於10時,本研究所建立的模型之預測值與其他理論模式有相似的精確預測功能,但是當彈性係數的比值大於20時,對於雙相複合材料之彈性及熱膨脹性質預測,本研究所建立的模型具有較佳的預測結果。


In the present study, a unit cell model is proposed to predict the elastic constants (Poisson’s ratio, Young’s, bulk and shear moduli) and thermal expansion coefficient of two-phase composites. The feasibility of the present model is verified by comparing the model predictions with experimental model.
Comparing with many monolithic materials, many more factors can affect the elastic and thermal properties of two-phase composites. For examples, the shape of the second phase, composition, the size and distribution of pores, interface integrity, etc., can all affect the resulting properties of composites. Apart from these microstructural complexities, the transfer of stress within the composite is also unknown. Therefore, it is almost impossible to deliver a precise estimation on the elastic constants and thermal expansion coefficient of composites. Instead, a pair of upper and lower bounds to cover the possible variation on the elastic and thermal constants is proposed in the present study. We further assume that the model is applied only to the fully dense composites in which the components are strongly bonded. Therefore, it is not possible for the two components to separate at their interfaces when the composite is loaded or heated. The discussion also restricts itself to macro-composites, namely, to those in which the scale of the second phase is large to microstructure so that composite properties can be modeled by using continuum mechanics without resort to atomic and dislocation mechanics. Furthermore, the size of specimen is much larger than the size of second phase so that the properties are an appropriate average of those of the components in the composites.
The present model tend to offer predictions over the entire composition range of the two-phase composites, namely, the amount of the second phase varies from 0 to 100 vol.%. The experimental data for the composites with the composition covers the entire composition range are sparse. Therefore, the Al2O3-NiAl composites with the NiAl content varied from 0 to 100 vol.% are prepared by hot-pressing. The elastic constants of the composites are measured by employing an ultrasonic technique, the thermal expansion coefficient by using a thermal mechanical analyzer.
As the amount of second phase is large, the second phase particle tends to interconnect with each other to form an interpenetrating microstructure. To reflect such microstructural feature, a unit cell model with elongated second phase is proposed in the present study. The stress-strain coupling is also taken into account. The model prediction on elastic modulus and Poisson’s ratio shows strong dependence on the ratio of elastic modulus of matrix to that of second phase. The thermal expansion coefficient of composite also shows strong dependence of the elastic modulus ratio. It demonstrate that the thermal expansion of a composite as it is under a temperature change is in-fact an elastic problem.
The model predictions are compared with the experimental data of the Al2O3-NiAl composites. A comprehensive collection on the experimental data for other two-phase composites has also been conducted. The comparison between the model predictions and all available experimental data demonstrates the validation of the model. The model prediction is also compared with other theoretical models, for example, the Hashin-Shtrikman model for elastic constants and Kerner and Schapery models for thermal expansion coefficient. The model proposed in the present study shows similar precision on the properties of composites as the elastic modulus ratio is lower than 10. However, the elastic modulus ratio is higher than 20, the model proposed in the present study shows improved prediction on the properties of two-phase composites.


摘 要 i
Abstract iii
Contents v
List of Tables vii
List of Figures viii
Nomenclature xii
I. Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Objectives 4
II. Literature Survey 5
2.1 Theoretical Models 5
2.1.1 Elastic Constants 5
2.1.2 Poisson’s Ratio 10
2.1.3 Thermal Expansion Coefficient 12
2.2 Mechanical Behavior of Materials 16
2.2.1 Generalized Hooke’s Law 16
2.2.2 Thermal Strain 18
2.2.3 Equations from Simple Parallel and Series Models 19
III. Preparation of a Model Composite 20
3.1 Preparation of Al2O3-NiAl 20
3.2 Elastic Constants of Al2O3-NiAl Composites 22
3.2.1 Ultrasonic Testing 22
3.2.2 Results and Discussion 22
3.3.3 Conclusions 23
3.3 Thermal Expansion Behavior of Al2O3-NiAl Composites 24
3.3.1 TMA Test 24
3.3.2 Results and Discussion 24
3.3.3 Conclusions 25
IV. A Universal Model for Elastic and Thermal Constants 29
4.1 Geometry 31
4.2 Elastic Constants of Composites 32
4.3 Poisson’s Ratio of Composites 34
4.4 Thermal Expansion Coefficient of Composites 38
V. Comparison 42
5.1 Features of the Present Model 42
5.1.1 Elastic Constants 43
5.1.2 Poisson’s Ratio 44
5.1.3 Thermal Expansion Coefficient 45
5.2 Comparison with Experimental Data 47
5.2.1 Elastic Constants 47
5.2.2 Poisson’s Ratio 47
5.2.3 Thermal Expansion Coefficient 48
VI. Conclusions 59
References 60
Appendix 68
A.1 Features of the Present Model 68
A.2 Comparison with other Experimental Data 68
Curriculum Vitae 83



Arridge, R. G. C., An introduction to polymer mechanics. Taylor and Francis, London (1985)
Arpon, R., Molina, J. M., Saravanan, R. A., Garcya-Cordovilla, C., Louis, E. and Narciso, J., Thermal expansion behaviour of Aluminium/SiC composites with bimodal particle distributions. Acta Mater., 51 (2003) 3145
Ashcroft, N. W. and Mermin, N. D., Solid state physics. Saunders College Publishing (1976)
Ashby, M. F. and Jones, D. R. H., Engineering materials I- an introduction to their properties and applications. First Ed., Pergamon Press, Oxford (1980)
Ashby, M. F., Criteria for selecting the components of composites. Acta metal. Mater., 40 [5] (1993) 1313
Banks–Sills, L., Leiderman, V. and Fang, D., On the effect of particle shape and orientation on elastic properties of metal matrix composites. Comp. Part B, 28B (1997) 465
Baron, B., Chartier, T., Rouxel, T., Verdier, P. and Laurent, Y., SiC particale reinforced oxynitride glass: processing and mechanical properties. J. Eur. Ceram. Soc., 17 (1997) 773
Benveniste, Y., A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater., 6 (1987) 147
Blessing, G. V., The pulsed ultrasonic velocity method for determining material dynamic elastic moduli, in ‘dynamic elastic modulus measurements in materials’. ASTM, Alan Wolfenden Ed., (1990)
Boccaccini, A. R. and Fan, Z., A new approach for the Young’s modulus-porosity correlation of ceramic materials. Ceram. International, 23 (1997) 239
Bruck, H. A., Evaluation of rule-of-mixtures predictions of thermal expansion in power-processed Ni-Al2O3 composites. J. Am. Ceram. Soc., 82 [10] (1999) 2927
Budiansky, B. On the elastic moduli of some heterogeneous materials. Mech. Phys. Solids, 13 (1965) 223
Chawla, K. K., Ceramic matrix composites. First Edition, Chapman & Hill, New York, (1993)
Chawla, N., Patel, B.V., Koopman, M., Chawla, K. K., Saha, R., Patterson, B. R., Fuller, E.R. and Langer, A., Microstructure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis. Mater. Character., 49 (2003) 395
Chouchaoui, C. S. and Benzeggagh, M. L., The effect of interphase on the elastic behavior of a glass/epoxy bundle. Comp. Sci. Tech., 57 (1997) 617
Cornie, J. A., Chiang, Y. M., Uhlmann, D. R., Mortensen, A. and Collins, J. M., Processing of metal and ceramic matrix composites. Ceram. Bull., 65 [2] (1986) 193
Crowe, C. R., Gray, R. A. and Hasson, D. F., Microstructure controlled fracture tougness, in ICCM-V. Edited by Harrigan, W. C., Strife, Jr., J. and Dhingra, A. K., Metall. Soc. Inc. (1985) 843
Daehn, G. S., Starck, B., Xu, L., Elfishawy, K. F., Ringnalda, J. and Fraser, H. L., Elastic and plastic behavire of a co-continuous Alumina/Aluminum composite. Acta Mater., 44 [1] (1996) 249
Davis, L. C. Third order bounds on the elastic moduli of metal-matrix composites. Metall. Trans. A, 22A (1991) 3065
Doi, H., Fujiwara, Y., Miyake, K. and Oosawa, Y., A systematic investigation of elastic moduli of WC-Co Alloys. Metall. Trans., 1 (1970) 1417
El-Eskandarany, M. S., Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites. J. Alloys Comp., 279 (1998) 263
El-Eskandarany, M. S., Mahday, A. A., Ahmed, H. A. and Amer, A. H., Synthesis and characterizations of ball-milled nanocrystalline WC an nanocomposite WC-Co powders and subsequent consolidations. J. Alloys Comp., 312 (2000) 315
Elomari, S., Skibo, M. D., Sundarrajan, A. and Richards, H., Thermal expansion behavior of particulate metal-matrix composites. Comp. Sci. Tech., 58 (1998) 369
Faber, K.T. and Evans, A. G., Crack deflection processes - I. theory. Acta Metall., 31 [4] (1983) 565
Fan, Z., Tsakiropoulos, P. and Miodownik, A. P., Prediction of Young’s modulus of particulate two phase composites. Mater. Sci. Eng., 8 (1992) 922
Fan, Z. A., Miodownik, P. and Tsakiropoulos, P., Microstructural characterization of two phase material. Mater. Sci. Tech., 9 (1993) 1094
Ferro, A. C. and Derby, B. Wetting behaviour in the Al-Si/SiC system: interface reactions and solubility effects. Acta Metall. Mater., 43 [8] (1995) 3061
Garboczi, E. J. and Day, A. R., An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimentional results for composite with equal phase Poisson ratios. J. Mach. Phys. Solids, 43 [9] (1995) 1349
Gasik, M. M., Micromechanical modelling of functionally graded materials. Comp. Mater. Sci., 13 (1998) 42
Gibiansky, L. V. and Torquato, S., Phase-interchange relations for the elastic moduli of two-phase composites. Int. J. Eng. Sci., 34 [7] (1996) 739
Gibiansky, L. V. and Torquato, S., Thermal expansion of isotropic multiphase composites and polycrystals. J. Mech. Phys. Solid, 45 [7] (1997) 1223
Gribb, J. L., Shrinkage and thermal expansion of a two-phase material. Nature, 220 (1968) 576
Haein, C. Y., Schroers, J. and Johnson, W. L., Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites. App. Phys. Lett., 80 [11] (2002) 1906
Hale, D. K., Review - the physical properties of composite materials. J. Mater. Sci., 11 (1976) 2105
Halpin, J. C. and Kardos, J. L., The Halpin-Tsai equations: a review. Poly. Eng. Sci., 16 [5] (1976) 344
Harmat, P., Kotsis, I., Laczko, L. and Bartha, L., Melting and phase transformation of hardmetal powders. Solid State Ionics, 141-142 (2001) 157
Hashin, Z. Analysis of composite materials - a survey. J. App. Mech., 50 (1983) 481
Hashin, Z. and Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids, 10 (1962a) 335
Hashin, Z. and Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids, 10 (1962b) 343
Hashin, Z. and Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids, 11 (1963) 127
Hasselman, D. P. H. and Fulrath, R. M., Effect of spherical tungsten dispersions on Young’s modulus of a glass. J. Am. Ceram. Soc., 48 [10] (1965) 548
Hill, R. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11 (1963) 357
Hoover, W. R, Recent advances in castable metal matrix composite, pp. 115-121 in Proceedings of an international conference on fabrication of particulates reinforced metal composites. Am. Soc. Metals, Metals Park, OH (1990)
Hornbogen, E., Review: a systematic description of microstructure. J. Mater. Sci., 21 (1986) 3737
Hsieh, C. L., and Tuan, W. H., Elastic properties of a modal two-phase material. J. Europ. Ceram. Soc. 24 (2004) 3789
Hsieh, C. L., and Tuan, W. H., Elastic properties of ceramic-metal particulate composites. in press.
Ibrahim, I. A., Mohamed, F. A. and Lavernia, E. J., Particulate reinforced metal matrix composites – a review. J. Mater. Sci., 26 (1991) 1137
Ivanow, I. and Tabiei, A., Three–dimensional computational micro–mechanical model for woven fabric composites. Comp. Struc., 54 (2001) 489
Ju, J. W. and Zhang, X. D., Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. Int. J. Solids Struc., 35 [9–10] (1998) 941

Karantzalis, A. E., Wyatt, S. and Kennedy, A. R., The mechanical properties of Al-TiC metal matrix composites. Mater. Sci. Eng., A237 (1997) 200
Kawasaki, A. and Watanabe, R., Concept and P/M fabrication of functionally gradient materials. Ceram. Int., 23 (1997) 73
Kerner, E. H., The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc., 69 (1956) 808
kim, H. S., Hong, S. I. and Kim, S. J., On the rule of mixtures for predicting the mathanical properties of composites with homogeneously distributed soft and hard particles. J. Mater. Proc. Tech., 112 (2001) 109
Kingery, W. D., Note on thermal Expansion and microstresses in two-phase compositions. J. Am. Ceram. Soc., 40 [10] (1957) 351
Kingery, W. D., Introduction to ceramics. Second Ed., John Wiley and Sons (1976)
Koizumi, M., FGM activities in Japan. Comp. Part B, 28B (1997) 1
Koster, W. and Franz, H., Poisson’s ratio for metals and alloys. Metall. Reviews, 6 (1961) 1
Kwon, P. and Dharan, C. K. H. Effective moduli of high volume fraction particulate composites. Acta Metall. Mater., 43 [3] (1995) 1141
Laurent, V., Chatain, D. and Eustathopoulos, N., Wettability of SiC by Aluminium and Al-Si alloys. J. Mater. Sci., 22 (1987) 244.
Laurent, V., Rado, C. and Eustathopoulos, N., Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng., A205 (1996) 1
Lee, J. H., Nondestructive characterization of metal matrix composite by ultrasonic measurement. Comp. Eng., 5 [12] (1995) 1423
Leisk, G. G. and Saigal, A., The acoustoelastic measurement of elastic constants in Alumina/Aluminum metal matrix composites. Scripta Metall. Mater., 33 [7] (1995) 1151
Li, Z.Q., Zhanga, X. R., Zhanga, S. Y. and Shena, Z. H., Determination of the elastic constants of metal-matrix composites by a laser ultrasound technique. Comp. Sci. Tech., 61 (2001) 1457
Liaw, P. K., Shannon, R. E., Vlark, W. G., Harrigan, Jr. W. C., Jeong, Jr. H., and Hsu, D. K., Nondestructive characterization of material properties of metal-matrix composites. Mater. Chem. Phys., 39 (1995) 220
Liaw, P. K., Hsu, D. K., Yu, N., Miriyala, N., Sain,V. and Jeong, H., Investigation of metal and ceramic-matrix composites moduli: experiment and theory. Acta Mater., 44 [5] (1996) 2101
Lin, G. R., A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials. Comp. Struc., 40 [3-4] (1998) 313
Lloyd, D. J., Particle reinforced Aluminum and Magnestium matrix composites. Int. Mater. Revs., 39 [1] (1994) 1
Lu, Y. and Liaw, P. K. Effects of particle orientation in silicon carbide particulate reinforced Aluninum matrix composite extrusions on ultrasonic velocity measurement. J Comp. Mater., 29 [8] (1995) 1096
Mackerle, J., Ceramics and ceramic matrix composites: finite element and boundary element analysis. Finite Elements in Analysis and Design, 38 (2002) 567
Matt, J. P., Elastic properties of polycrystalline minerals: comparison of theory and experiment. Phys. Chem. Min., 15 (1988) 579
McDanels, D. L., Analysis of stress-strain, fracture, and ductility behavior of Aluminum matrix composites containing discontinuous Silicon Carbide reinforcement. Metall. Trans. A, 16A (1985) 1105
Miller, D. P. and Lannutti, J. J., Fabrication and properties of functionally graded NiAl/Al2O3 composites. J. Mater. Res., 8 (1993) 2004
Milton, G. W. and Phan-Thien, N., New bounds on effective elastic moduli of two-component materials. Proc. R. Soc. Lond., A380 (1982a) 305
Milton, G. W. Bounds on the elastic and transport properties of two-component composites. J. Mech. Phys. Solids, 30 [3] (1982b) 177
Miracle, D. B. The physical and mechanical properties of NiAl. Acta Metall. Mater., 41 [3] (1993) 649
Morrell R., Handbook of properties of technical & engineering ceramics, Part I, National Physical Laboratory (Great Britain), London (1987)
Mortensen, A., A review of the fracture toughness of particle reinforced aluminum alloys, in proceedings of an international conference on fabrication of particulates reinforced metal composites. Am. Soc. Metals, Metals Park, OH (1990) 217
Mott, G. and Liaw, P. K. Correlation of mechanical and ultrasonic properties of Al-SiC metal-matrix composite. Metall. Trans. A, 19A (1988) 2233
Nagendra, N., Rao, B. S. and Jayaram, V., Microstructures and properties of Al2O3/Al–AiN composites pressureless infiltration of Al–alloys. Mater. Sci. Eng., A269 (1999) 26
Newnham, R. E., Skinner, D. P. and Cross, L. E., Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull., 13 (1978) 525
Okoli, O. I. And Smith, G. F., The effect of strain rate and fibre content on the Poisson’s ratio of glass/epoxy composites. Comp. Struc., 48 (2000) 157
Orrhede, M., Tolani, R. and Salama, K. Elastic constants and thermal expansion of Aluminum-SiC metal-matrix composites. Res. Nondestr. Eval., 8 (1996) 23
Owen, A. J. and Koller, I., A note on the Young’s modulus of isotropic two-component materials. Polymer, 37 [3] (1996) 527
Paul, B., Prediction of elastic constants of multiphase materials. Trans. AIME, 218 (1960) 36
Pedzich, Z., Haberko, K., Piekarczyk, J., Faryna, M. and Lityńska, L., Zirconia matrix–Tungsten carbide particulate composites manufactured by hot-pressing technique. Mater. Lett., 36 (1998) 70
Peng, H. X., Fan, Z., Mudher, D. S. and Evans, J. R. G., Microstructures and mechanical properties of engineered short fiber reinforced Aluminium matrix compooites. Mater. Sci. Eng., A335 (2002) 207
Peng, H. X., Fan, Z., and Evans, J. R. G., Bi-continuous metal matrix composites. Mater. Sci. Eng., A303 (2004) 37
Premkumar, M. K., Hunt, W. H. and Sawtell, Jr. R. R., Alluminum composite materials for multichip modules. J Metals, 44 (1992) 24
Ramakrishna, S., Hamada, H. and Cheng, K. B., Analytical procedure for the prediction of elastic properties of plain knitted fabric–reinforced composites. Comp. Part A, 28A (1997a) 25
Ramakrishna, S., Characterization and modeling of the tensile properties of plain weft–knit fabric–reinforced composites. Comp. Sci. Tech., 57 (1997b) 1
Ravichandran, K. S., A simple model of Deformation behavior of two phase composites. Acta Metall. Mater., 42 [4] (1993) 1113
Ravichandran, K. S., Elastic properties of two-phase composites. J. Am. Ceram. Soc., 77 [5] (1994) 1178
Reuss, A., Berechnung der fliebgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. Z. Angrew. Math. Mech., 9 (1929) 49
Rice, R. W., Microstructure dependence of mechanical behavior of ceramics. Treatise of Mater. Sci. Tech., 11, 199-331, Academic Press, N.Y. (1997)
Richard, T. G., The mechanical behavior of a solid microsphere filled composite. J. Comp. Mater., 9 (1975) 108
Roberts, A. P. and Garbozi, E. J., Elastic properties of a tungsten-silver composite by reconstruction and computation. J. Mech. Phys. Solids, 47 (1999) 2029
Roberts, A. P. and Garbozi, E. J., Elastic properties of model porous ceramics. J. Am. Ceram. Soc., 83 [12] (2000) 3041
Rosen, B. W. and Hashin, Z., Effective thermal expansion coefficients and specific heats of composite materials. Int. J. Eng. Sci., 8 (1970) 157
Salerno, C. M. J. and Watt., P., Walpole bounds on the effective elastic moduli of isotropic multicomponent composites. J. App. Phys., 60 [5] (1986) 1618
Sasaki, M. and Hirai, T., Fabrication and properties of functionally gradient materials. J. Ceram. Soc. Jap., 99 (1991) 770
Schapery, R. A., Thermal expansion coefficient of composite materials base on energy principle. J. Comp. Mater., 2 [3] (1968) 380
Schulgasser, K., Thermal expansion of polycrystalline aggregates with texture. J. Mech. Phys. Solid, 35 [1] (1987) 35
Schulgasser, K., Thermal expansion of polycrystals. J. Mater. Sci. Lett., 8 (1989a) 228
Schulgasser, K., The relationship between stiffness and thermal expansion of carbon fibers. Mater. Sci. Eng., A-10 (1989b) L35
Shalek, P. D., Petrovic, J. J., Hurley, G. F. and Gac, F. D., Hot-pressed SiC whisker/Si3N4 matrix composites. Am. Ceram. Soc. Bull., 65 [2] (1986) 351
Shan, H. Z. and Chou, T. W., Transverse elastic moduli of unidirectional fiber composites with fiber/matrix interfacial debonding. Comp. Sci. Tech., 53 (1995) 383
Sham, M. L. and Kim, J. K., Evolution of residual stress in modified exopy resins for electronics packing applications. Comp. A, 35 (2004) 537
Skirl, S., Hoffman, M., Bowmans, K., Wiederhornp, S. and Rddel, J., Thermal expansion behavior and macrostrain of A1203/A1 composites with interpenetrating networks. Acra Mater., 46 [7] (1998) 2493
Sun, Q. and Inal, O. T., Fabrication and characterization of diamond-copper composites for thermal management substrate applications. Mater. Sci. Eng., B41 (1996) 261
Takao, Y. and Taya, M., Thermal expansion coefficients and thermal stresses in an aligned short fiber composite with application to a short Carbon fiber/Aluminum. Trans. ASME, 52 (1985) 806
Tuan, W. H., Chou, W. B., You, H. C. and Chang, S. T., The effects of microstructure on the mechanical properties of Al2O3-NiAl composites. Mater. Chem. Phys., 56 (1998) 157
Tuan, W. H. Mechanical properties of Al2O3-NiAl composites. J. Am. Ceram. Soc., 82 [6] (1999) 1624
Tuan, W. H., Chang, S. T., Chou, W. B. and Pai, Y. P., Effect of milling time on mechanical properties of Al2O3-NiAl composites. Brit. Ceram. Trans., 100 [1] (2001) 35
Turner, P. S., Thermal expansion stresses in reinforced plastics. J Res. Natl. Bureau Standards 37 (1946) 239
Vaidya, R. U. and Chawla, K. K., Thermal expansion of metal-matrix composites. Comp. Sci. Tech., 50 (1994) 13
Voigt, W. Über die Beziehung zwischen den beiden Elasticitäts-Constanten isotroper Körper. Ann. Phys., 38 (1928) 573
Wacker, G. A., Bledzki, K. and Chata, A., Effect of interphase on the transverse Young’s modulus of glass/epoxy composites. Comp. Part A, 28A (1997) 619
Walpole, L. J., On bounds for the overall elastic moduli of inhomogeneous system – I. J. Mech. Phys. Solids, 14 (1966), 155
Watt, J. P. Davies, G. F. and O''Connell, R. J., The elastic properties of composite materials. Rev. Geophys. Space Phys., 14 [4] (1976) 541
Wu, T. T. On the parametrization of the elastic moduli of two-phase materials. J. App. Mech., 32 (1965) 211
Wu, T. T. The Effect of inclusion shape on the elastic moduli of two-phase material. Int. J. Solid Struc., 2 (1966) 1
Xia, Z., Ellyin, F. and Meijer, G., Mechanical behavior of Al2O3–particle–reinforced 6061 Aluminum alloy under uniaxial and multiaxial cycle loading. Comp. Sci. Tech., 57 (1997) 237
Yen, R. H. T., Variational bounds of the elastic moduli of two-phase materials. J. App. Phys., 42 [3] (1971) 1101
Yoshida, K. and Morigami, H., Thermal properties of diamond/copper composite material. Microelectronics Reliability 44 (2004) 303
Yu, X. X. and Lee, W. B., The design and fabrication of and Alumina reinforced Aluminum composite material. Comp. Part A, 31 (2000) 245
Yun, S. and Lauke, B. The elastic modulus of misaligned short-fiber-reinforced polymers. Comp. Sci. Tech., 58 (1998) 389
Zimmerman, R. W., Hashin-Shtrikman bounds on the Poisson ratio of a composite material. Mech. Res. Comm., 19 [6] (1992) 563
Zuiker, J. R. Functionally gradiend materials: choise of micromechanics model and limitations in properties variation. Comp. Eng., 1 [7] (1995) 807
Zweben, C. Metal-matrix composites for electronic packaging. J. Metals, 44 (1992) 15

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top