跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉恩道
研究生(外文):En-Dao Liu
論文名稱:以固態反應法開發能在還原氣氛中燒結之Y5V介電陶瓷配方粉體
論文名稱(外文):Development of Y5V Dielectric Powder Formulation for Reducing Atmosphere Sintering by Solid State Reaction Method
指導教授:宋志剛
指導教授(外文):Jakob Soong
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:80
中文關鍵詞:積層陶瓷電容器卑金屬複體
外文關鍵詞:MLCCBase MetalComplexY5V
相關次數:
  • 被引用被引用:0
  • 點閱點閱:542
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以卑金屬(Base metal)為內電極之積層陶瓷電容器(MLCC),逐漸取代其他電容器成為市場上的主流,為防止鎳(Nickel)電極在燒結時之氧化,電容元件必須在還原氣氛下燒結。以鈦酸鋇(Barium Titanate)為主體之配方粉體在還原氣氛下會產生的氧空缺(Oxygen Vacancy),在有電場之狀況下移動,而使介電層的鈦酸鋇粉體產生半導化現象。因此之故,同時在配方中加入施體(donor)與受體(acceptor)元素可形成複合體(Complex),解決導電及可靠度問題。
採用傳統的固態反應法製作鈦酸鋇為主的Y5V配方粉體[(Ba0.996Ca0.004)O]1.004[(Ti0.82Zr0.18)O2],此配方具有高介電常數及其在產業上實際應用之特性,在配方粉體中加入鐿離子與鎂離子,比較不同添加量彼此間差異,並在空氣及不同氧分壓下燒結,探討不同氣氛對於電性與顯微組織的影響,引用穿透式電子顯微鏡(TEM)和電子微探儀(EPMA)分析元素分佈狀況。
實驗結果顯示添加1.0at%鐿離子及添加0.1at%鐿離子與0.3at%鎂離子之配方粉體,在還原氣氛下燒結時,具有較佳介電常數及絕緣電阻之電性,並且符合EIA之Y5V規格,此乃是形成施體與受體之複合體之故。
利用掃描式電子顯微鏡(SEM)觀察積層陶瓷電容器顯微結構,並探討鎳電極對與有效介電層間(active dielectric layer, AD)擴散的情形。使用穿透式電子顯微鏡(TEM)或電子微探儀(EPMA)來做進一步地分析。

It is trends that multilayer ceramic capacitors (MLCC) with base metal inner electrode will substitute for other capacitors in market gradually. These capacitors must be fired in reducing atmosphere to protect nickel electrode from oxidation. The main powder formulation with barium titanate creates oxygen vacancy in reducing atmosphere. That vacancy could be moved by electric field to make barium titanate powders in dielectric layers resulting in semiconducting. For this reason, the additions of donor and acceptor simultaneously will form complex to solve conducting and reliability problems.
Use traditional solid state methods to prepare barium titanate based Y5V powder formulation in the system of [(Ba0.996Ca0.004)O] 1.004[(Ti0.82Zr0.18)O2]. The formulation has high dielectric constant and very popular in the market. We can compare difference by varying atmosphere and different ratio of ytterbium cation and magnesium cation in the powder. The effect could be studied in electric properties and microstructure. Elements distribution could be investigated by TEM and EPMA.
The results indicated that 1.0at% ytterbium cation formulation has better dielectric constant and insulation resistance in reducing sintering, and 0.1 at% ytterbium cation and 0.3 at% magnesium cation simultaneously formulation also has same result. These compositions meet Y5Vspecification in EIA, owing to complex composed of donor and acceptor.
We can further study microstructure in multilayer ceramic capacitors by SEM and diffusion of nickel from electrode into the active dielectric layers by use of TEM and EPMA.

總 目 錄
中文摘要……………………………………………………………………..…I
英文摘要………………………………………………………………………IIII
誌謝………………………………………………………………………………..V
總目錄…………………………………………………………………………. VI
圖目錄……………………………………………………………………….. IX
表目錄…………………………………………………………………………XI
第一章 緒論……………………………………………………………………1
1-1 前言………………………………………………………………….1
1-2 研究目的…………………………………………………………….2
第二章 文章回顧與理論基礎…………………………………………………3
2-1 積層陶瓷電容器之歷史發展………………………………………..3
2-1-1 積層陶瓷電容器原理與構造…………………………………...3
2-1-2 積層陶瓷電容器粉體的製備…………………………………...4
2-1-3 積層陶瓷電容器製程…………………………………………...6
2-2 卑金屬電極積層陶瓷電容器之發展………………………………..7
2-2-1 鎳與氧化鎳之關係…………….………………………………..7
2-2-1 施體與受體對介電性質之影響………………………………...8
2-3 積層陶瓷電容器的分類……………………………………………..9
2-3-1 高介電常數Y5V之積層陶瓷電容器………………………….9
2-3-2 中介電常數X7R之積層陶瓷電容器………………………….9
2-3-3 溫度補償型NPO之積層陶瓷電容器………………………...10
2-4 鎳電極與還原氣氛之關係…………………………………………10
2-5 純鈦酸鋇的基本性質………………………………………………10
2-5-1 鈦酸鋇單晶的基本結構及介電性質………………………….10
2-5-2 孔隙存在對介電常數的影響………………………………….11
2-6 稀土元素對介電性質的影響……………………………………….11
2-6-1 稀土元素對電阻率的影響……………………………………..12
2-6-2 稀土元素之離子半徑大小對鈦酸鋇取代的關係……………..12
第三章 實驗方法……………………………………………………………...21
3-1 實驗流程…………………………………………………………….21
3-1-1 鈦酸鋇粉體配製………………………………………………..21
3-1-2 薄片(disk)之製程……………………………………………….21
3-1-3 積層陶瓷電容器(MLCC)之製程……………………………….22
3-2 氣體流量控制………………………………………………………..22
3-3 氧分壓量測…………………………………………………………..22
3-4 X-ray繞射分析………………………………………………………23
3-5 掃描式電子顯微鏡顯微(SEM)結構觀察…………………………...23
3-6 介電常數(dielectric constant)量測…………………………………..23
3-7 介電損失(dissipation factor)量測……………………………………24
3-8 絕緣電阻(insulation resistance)量測………………………………...24
3-9 電子微探儀(EPMA)量測分析……………………………………….24
3-10 穿透式電子顯微鏡(TEM)分析…………………………………….25
第四章 結果與討論…………………………………………………………….29
4-1 添加鐿在空氣中燒結………………………………………………..29
4-1-1 添加鐿對絕緣電阻的影響……………………………………...30
4-1-2 添加鐿對電容溫度係數與介電損失的影響…………………...30
4-2 添加鐿在還原氣氛中燒結…………………………………………..31
4-2-1 添加鐿對絕緣電阻的影響……………………………………...31
4-2-2 添加鐿對電容溫度係數與介電損失的影響…………………...32
4-3 添加鐿與鎂在空氣中燒結…………………………………………..33
4-3-1 添加鐿與鎂對絕緣電阻的影響………………………………...34
4-3-2 添加鐿與鎂對電容溫度係數與介電損失的影響……………...34
4-4 添加鐿與鎂在還原氣氛中燒結……………………………………..35
4-4-1 添加鐿與鎂對絕緣電阻的影響………………………………...35
4-4-2 添加鐿與鎂對電容溫度係數與介電損失的影響……………...36
4-5 電子微探儀(EPMA)量測分析………………………………………37
4-6 穿透式電子顯微鏡(TEM)分析……………………………………...38
4-7 積層陶瓷電容器分析………………………………………………...38
4-7-1 積層陶瓷電容器之顯微結構分析………………………………38
4-7-2 積層陶瓷電容器之絕緣電阻分析………………………………39
4-7-3 積層陶瓷電容器之電容溫度係數與介電損失分析……………39
第五章 結論……………………………………………………………………73
第六章 參考文獻………………………………………………………………75
圖 目 錄
圖2-1 電容器的基本構造與迴路…………………………………………………...15
圖2-2 七層電極積層陶瓷電容器與六個並聯狀陶瓷電容器……………………...15
圖2-3 鈦酸鋇結晶構造與溫度的關係……………………………………….16
圖2-4 X7R添加Ho2O3不同氣氛之冷卻階段(a)還原氣氛(b)輕微氧氣氛………………………………………………………………….…17
圖2-5 300℃時(Ba1-2xR2x)(Ti1-xMgx)O3之晶格常數與x關係圖(R=La, Sm, Dy, Ho, Er, Yb)……………………………………………………….18
圖2-6 還原氣氛1380 ℃(Ba1-2xR2x)(Ti1-xMgx)O3之電阻率與x關係圖(R=La, Sm, Dy, Ho, Er, Yb)……………………………………………19
圖3-1 鈦酸鋇之(tetragonal)結晶結構圖……………………………………...26
圖3-2 實驗流程圖……………………………………………………………..27
圖3-3 氧分壓量測器示意圖…………………………………………………..28
圖4-1 不同Yb添加量在空氣中燒結與絕緣電阻關係圖…………………...41
圖4-2 添加(a)0.1at%Yb與(b)1.0 at%Yb在空氣中燒結與電容溫度係數……42
圖4-3 不同Yb添加量在空氣中燒結介電損失關係圖………………………..43
圖4-4 不同Yb添加量在空氣中燒結溫度為1350℃之SEM照片……………..44
圖4-5 不同Yb添加量在空氣中燒結溫度1350℃之SEM剖斷面照片………..45
圖4-6 不同Yb添加量在不同氧分壓燒結與絕緣電阻關係圖………………..46
圖4-7 不同Yb添加量在不同氧分壓下燒結與電容溫度係數關係圖(a)10-7atm (b)10-9atm (c)10-11atm…………………………………………………...47
圖4-8 不同Yb添加量在空氣中燒結電容溫度係數關係圖…………………..48
圖4-9 1.0 at% Yb在不同氣氛之SEM照片比較,左邊為表面,右邊為剖斷面…………………………………………………………...…………49
圖4-10 不同Yb添加量在不同氧分壓燒結與室溫介電常數關係圖…………50
圖4-11 0.1at%Yb與不同Mg添加量在空氣中燒結與電容溫度係數關係圖...51
圖4-12 0.1at%Yb與不同Mg添加量在空氣中燒結溫度為1350℃之SEM照片……………………………………………………………………...52
圖4-13 0.1at%Yb與不同Mg添加量在空氣中燒結溫度1350℃之SEM剖斷面照片……………………………………………………………………53
圖4-14 0.1at%Yb與不同Mg添加量在不同氧分壓燒結與絕緣電阻關係圖...54
圖4-15 0.1at%Yb與不同Mg添加量在不同氧分壓TCC圖(a)10-7atm (b)10-9atm (c)10-11atm……………………………………………………………..55
圖4-16 0.1at%Yb與不同Mg添加量在不同氧分壓燒結與室溫介電常數關係圖……………………………………………………………………...56
圖4-17 0.1at%與不同Mg添加量在不同氧分壓燒結與室溫介電損失關係圖………………………………………………………………………56
圖4-18 0.1at% Yb與0.3at% Mg在不同氣氛之SEM照片比較,左邊為表面,右邊為剖斷面…………………………………………………………..57
圖4-19 1.0at%Yb在氧分壓10-7atm燒結背向散射電子影像………………….58
圖4-20 1.0at%Yb在氧分壓10-7atm燒結,Zr、Ca、Yb分佈狀況……………58
圖4-21 0.1at%Yb與0.3at%Mg在氧分壓10-7atm燒結背向散射電子影像……59
圖4-22 0.1at%Yb與0.3at%Mg在氧分壓10-7atm燒結,Zr、Ca、Yb分佈狀況………………………………………………………………………59
圖4-23 0.1at%Yb在空氣燒結TEM之B.F.影像………………………………..60
圖4-24 添加0.1at%Yb在空氣燒結,Ca、Yb含量分布狀況………………61
圖4-25 添加0.1at%Yb在空氣燒結,Zr含量分布狀況…………………….61
圖4-26 添加0.1at%Yb與0.1at%Mg在空氣燒結TEM之B.F.影像…………….62
圖4-27 添加0.1at%Yb與0.1at%Mg在空氣燒結,Ca、Yb、Mg含量分佈狀況……………………………………………………………………63
圖4-28 添加0.1at%Yb與0.1at%Mg在空氣燒結,Zr含量分佈狀況。………63
圖4-29 以刮刀的方式所形成的薄帶胚體正反面之比較,(a)為正面,(b)為反面……………………………………………………………………64
圖4-30 MLCC之添加1.0at% Yb在不同氣氛之SEM照片比較,左邊為表面,右邊為剖斷面………………………………………………………65
圖4-31 添加1.0at%鐿離子之積層陶瓷電容器在不同氧分壓下燒結之絕緣電阻關係圖……………………………………………………………...66
圖4-32 添加1.0at%鐿離子之積層陶瓷電容器在10-11atm氧分壓下燒結之電容溫度係數與介電損失關係圖………………………………………...66
表 目 錄
表2-1 不同溫度下所需要的氧分壓………………………………………….20
表2-2 不同燒結溫度與不同氧分壓下,二氧化碳與氫氣所需要的比例。…………………………………………………………………...20
表4-1 不同鐿離子含量於空氣中燒結電性測試之總表…………………….67
表4-2 不同鐿離子含量在還原氣氛下中燒結電性測試之總表……………..68
表4-3 添加0.1at%鐿離子與不同鎂離子於空氣中燒結電性測試之總表…..69
表4-4 添加0.1at%鐿離子與不同鎂離子含量在還原氣氛下燒結電性測試之總表……………………………………………………………………….70
表4-5 積層陶瓷電容器添加1.0at%鐿離子含量在還原氣氛下中燒結電性測試之總表…………………………………………………………………...71
表4-6 1.0at%Yb添加量在氧分壓10-7燒結溫度為1350℃各化合物莫爾比...72
表4-7 0.1at%Yb與0.3at%Mg添加量在氧分壓10-7燒結溫度為1350℃各化合物莫爾比………………………………………………………………….72

1. 陳聰文, “積層陶瓷電容器簡介,” 工業材料, 第108期, pp.72-80, 1995年12月.
2. Hiroshi KISHI, Youichi MIZUNO and Hirokazu CHAZONO, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives”, Jpn. J. Appl. Phys., Vol. 42, No. 1, Part 1, January, pp.1-15, 2003.
3. Takeshi NOMURA, Junko MIURA, Tomohiro ARASHI, Yukie NAKANO, and Akira SATO, “Multilayer Ceramic Capacitors-Recent Trends, IEEE, pp.135-141, 1996.
4. Detlev F. K. Hennings, B. Seriyati Schreinemacher, and Herbet Schreinemacher, “Solid-state Preparation of BaTiO3-Based Dielectrics, Using Ultrafine Raw Materials, J. Am. Ceram. Soc. Vol. 84, No 12, pp.2777-2782, 2001.
5. M. C. Cheung, H. L. W. Chan, C. L. Choy, “Study on barium titanate ceramics prepared by various methods”, Journal of materials science, Vol.36, pp.381-387, 2001.
6. James O. Eckerrt Jr., Catherine C. Huang-Houston, Bonnie L. Gersten, Malgorzata M. Lencka, and Richard E. Riman, “Kinetics and mechanisms of hydrothermal synthesis of barium titanate”, J. Am. Ceram. Soc., Vol. 79, No. 11, pp.2929-2939, 1996.
7. Er-wei Shi, Chang-Tai Xia, Wei-Zhou Zhong, Bu-Guo Wang, and Chu-De, “Crystallographic properties of hydrothermal barium titanate”, J. Am. Ceram. Soc., Vol. 80, No. 6, pp.1567-1672, 1997.
8. 胡志明等, “濕式化學法合成鈦酸鋇粉體,” 化工資訊, pp.22~37, 2002年11月.
9. 吳朗, “電子陶瓷介電,” 全欣科技圖書, pp.152-249.
10. Hung Vvan Trinh and Jan B. Talbot, “Electrodeposition method for terminals of multilayer ceramic capacitors”, J. Am. Ceram. Soc., Vol. 86, No. 6, pp.905-909, 2003.
11. Tetsuhiro Takahashi, Yuichi Nakano, Hironari Shoji, Haruhiko Matsushita, Hiroshi Ogawa, Akira Onoe, Hideyuki Kanai, Yohachi Yamashita, “Effect of additives on the sintering behavior of the Ni internal electrode of BaTiO3-based multilayer ceramic capacitors”, IEEE, pp.575-578, 1998.
12. David I. Spang, Ian Burn and Ahmad Safari, “Reduction Resistant High BaTiO3 for Base Metal Compatibility”, IEEE, pp.809-812, 1996.
13. Yongli Wang, Longtu Li, Jianquan Qi, Zhenwei Ma, Jiaangli Cao, Zhilun Gui, “Nickel diffusion in base-metal-electrode MLCCs”, Materials science and engineering, Vol. B99, pp.378-381, 2003.
14. Hiroshi Kishi, Yoshikazu Okino, Mutsumi Honda, Yoshiaki Iguchi, Motoaki Imaeda, Yoshinao Takahashi, Hitoshi Ohsato and Takashi Okuda, “The effect of MgO and Rare-Earth Oxide on formation Behavior of Core-shell Structure in BaTiO3”, Jpn. J. Phys., Vol. 36, No. 9B, Sept., pp.5954-5957, 1997.
15. Seok-Hyun Yoon, Je-Hun Lee, and Doh-Yeon Kim, “Effect of the liquid-phase characteristic on the microstructures and dielectric properties of donor- (Niobium) and acceptor- (magnesium) doped barium titanate”, J. Am. Ceram. Soc. Vol. 86, No. 1, pp.88-92, 2003.
16. I. Burn, G. H. Maher, “High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres”, Journal of materials science, Vol. 10, pp.633-640, 1975.
17. D.M.Symth, “Multilayer Ceramic Capacitors With Base Metal Electrodes”, Application of Ferroelectrics, proceeding of the 2000 12th IEEE international Symposium on, Vol. 1, pp.369-373, 2000.
18. Detlev F.K. Hennings, “Multilayer Ceramic Capacitors With Base Metal Electrodes”, proceeding of the 2000 12th IEEE international Symposium on, Vol. 1, pp.135-138, 2000.
19. K.Albertsen, D. Hennings and O. Steigelmann, “Donor-Acceptor Charg Complex Formation in Barium Titanate Ceramics: Role of Firing Atmosphere”, J Electroceramics 2:3, pp.193-198, 1998.
20. Shigeki Sato, Yukie Nakano, Akira Sato and Takeshi Nomura, “Mechanism of Improvement of Resistance Degradation in Y-doped BaTiO3 Based MLCCs with Ni Electrodes under Highly Accelerated Life Testing”, Journal of the European Ceramic Society, Vol. 19, pp.1061-1065, 1999.
21. Peter Hansen, Detlev Hennings, and Herbet Schreinemacher, “High-K dielectric ceramics from donor/acceptor-codoped (Ba1-xCax)(Ti1-yZry)O3 (BCTZ)”, J. Am. Ceram. Soc. Vol. 81, No. 5, pp.1369-1373, 1998.
22. Darko Makovec, Nina Ule, and Miha Drofenik, “Positive temperature coefficient of resistivity effect in highly donor-doped barium titanate”, J. Am. Ceram. Soc., Vol. 84, No.6, pp.1273-1280, 2001.
23. 陳三元, “積層陶瓷電容器粉體製作”, 工業材料, 第108期, pp.63-66, 1995年12月.
24. RenZheng Chen, Xiaohui Wang, ZhiLun Gui, and LongTu Li, “Effect of silver on the dielectric properties of barium titanate-based X7R ceramic”, J. Am. Ceram. Soc., Vol. 86, No. 6, pp.1022-1024, 2003.
25. Sea-Fue Wang, “Dielectric Properties of Fine-Grained Barium titanate Based X7R Materials”, J. Am. Ceram. Soc., Vol. 82, No. 10, pp.2677-2682, 1999.
26. Jun-ichi Itoh, Dae-Chul Park, Naoki Ohashi, Isao Sakaguchi, Isamu Yashima, Hajime Haneda and Junzo Tanaka, “Oxygen diffusion defect chemistry in rare-earth-doped BaTiO3”, Journal of the ceramic society of japan, Vol. 110, No. 5, pp.495-500, 2002.
27. Youichi Mizuno, Yoshikazu Okino, Noriyuki Kohzu Chazono and Hiroshi Kishi, “Influence of the microstructure evolution on electrical properties of multilayer capacitor with Ni electrode’, Jpn. J. Appl. Phys., Vol. 37, pp.5227-5231, 1998.
28. Hisamitsu Shizuno, Shinya Kusumi, Hiroshi Saito and Hiroshi Kishi, “Properties of Y5V multilayer ceramic capacitors with Nickel electrodes”, Jpn. J. Appl. Phys., Vol. 32, pp.4380-4383, 1993.
29. Wen-His lee, Detler Hennings and Ying-Chien Lee, “Effect of Dy doping on resistance degradation of (Ba)(Ti,Zr)O3 sintered in reducing atmosphere under highly accelerated ife test”, Journal of the ceramic society of japan, Vol. 109, No. 10, pp.823-828, 2001.
30. Jin Hyun Hwang, Sang Keun Choi and Young Ho Han, “Dielectrics properties of BaTiO3 codoped with Er2O3 and MgO”, Jpn. J. Appl. Phys., Vol. 40, pp.4952-4955, 2001.
31. Ming-Hong Lin, Hong-Yang Lu, “Site-occupancy of yttrium as a dopant in BaO-excess BaTiO3”, Materials science and engineering, Vol. A335, pp.101-108, 2002.
32. N. H. Chan, and D. M. Smyth, “Defect chemistry of donor-doped BaTiO3”, J. Am. Ceram. Soc., Vol. 67, No. 4, pp.285-288, 1984.
33. M. T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, “Influence of foreign ions on the crystal structure of BaTiO3”, Journal of the Europen Ceramic Society, Vol. 20, pp.1997-2007, 2000.
34. Jin Hyun Hwang and Young Ho Han, “Electrical properties of cerium-doped BaTiO3”, J. Am. Ceram. Soc. Vol. 84, No. 8, pp.1750-1754, 2001.
35. Tomoyuki Nakamura, Harunobu Sano, Takehiro Konoike and Kunisaburo Tomono, “BaTiO3-based Non-reducible low-loss dielectric ceramics”, Jpn. J. Appl. Phys., Vol. 38, pp.5457-5460, 1999.
36. Hiroshi Kishi, Yoshikazu Okino, Mutsumi Honda, Yoshiaki Iguchi, Motoaki Imaeda, Yoshinao Takahashi, Hitoshi Ohsato and Takashi Okuda, “The effect of Rare-earth (La, Sm, Dy, Ho and Er) and Mg om the Microstructrue in BaTiO3”, Journal of the Europen Ceramic Society, Vol. 19, pp.1043-1046, 1999.
37. Hiroshi Kishi, Noriyuki Kohzu, Yoshikazu Okino, Mutsumi Honda, Yoshiaki Iguchi, Motoaki Imaeda, Yoshinao Takahashi, Hitoshi Ohsato and Takashi Okuda, “Effect of Occupational Sites of Rare-Earth Elements on the Microstructure in BaTiO3”, Jpn. J. Phys., Vol. 38, pp.5452-5456, 1999.
38. Yukio Sakabe, Yukio Hamah, Harunobu Sano and Nobuyuki Wada, “Effects of rare-earth oxides on the reliability of X7R dielectrics, Jpn. J. Appl. Phys., Vol. 41, pp.5668-5673, 2002.
39. Maria Teresa Buscaglia, Massimo Viviani, Vincenzo Buscaglia, and Carlo Bottino, “incorporation of Er+3 into BaTiO3”, J. Am. Ceram. Soc., Vol. 85, No. 6, pp.1569-1575, 2002.
40. Y. Tsur, A. Hitomi, I. Scrymgeour and C. A. Randall, “Site occupancy of earth cations in BaTiO3”, Jpn. J. Appl. Phys., Vol. 40, pp.255-258, 2001.
41. Jianquan Qi, Zhilun Gui, Yongli Wang, Tao Li, Longtu Li., “Doping behavior of Ytterbium oxide in Ba(Ti1-yZry)O3 dielectrics ceramics”, Journal of Materials Science Letters, Vol. 21, pp.405-406, 2002.
42. Yongli Wang, Longtu Li, Jianquan Qi, Zhilun Gui., “Ferroelectrics of ytterbium-doped barium zirconium titanate ceramics”, Ceramics International, Vol. 28, pp.657-661, 2002.
43. J.Yamamatsu, N. Kawano, T. Arashi, Stao, Y. Nakano, Nomura, “Reliability of Multilayer ceramic capacitors with Nickel eleectrodes”, Journal of Power Sources, Vol. 60, pp.199-203, 1996.
44. A.J.Moulson and J.M.Herbert, Electroceramics, Chapman & Hall, Inc, New York, pp.156-160, 1990.
45. H. T. Langhammer, Q. M. Song, H.-P. Abicht, “Investigation of the sintering of barium titanate ceramics by oxygen coulometry”, Journal of the Europen Ceramic Society, Vol. 21, pp.1893-1897, 2001.
46. Cheng-Jien Peng and Hon-Yang Lu, “Compensation Effect in Semiconducting Barium Titanate”, Communications of the American Ceramic Society, Vol. 71, No. 1, pp.c44-c46, 1998.
47. N. Halder, D. Chattopadhyay, A. Das Sharma, D. Saha, A. Sen, H. S. Maiti, “Effect of sintering atmosphere on the dielectric properties of barium titanate based capacitors”, Materials Research Bulletin, Vol 36, pp.905-913, 2001.
48. Ching-Jui Ting, Cheng-Jien Peng, Hong-Yang Lu, and shinn-Tyan Wu, “Lanthanum-Magnesium and Lanthanum-Manganese donor-acceptor-codoped semiconducting barium titanate”, J. Am. Ceram. Soc. Vol. 73, No. 2, pp.329-334, 1990.
49. Kazutaka Watanabe, Hitoshi Ohsato, Hiroshi Kishi, yoshikazu Okino, Noriyuki Kohzu, Yoshiaki Iguchi, Takashi Okuda, “Solubility of La-Mg and La-Al in BaTiO3”, Solid state Ionics, Vol 108, pp.129-135, 1998.
50. Toru Nagai and Kenji Iijima, “Effect of MgO doping on the phase transformation of BaTiO3”, J. Am. Ceram. Soc. Vol. 83, No. 1, pp.107-112, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top