跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴長志
研究生(外文):Lai, Chang-Chih
論文名稱:應用區間二型T-S模糊控制系統之單相雙向換流器研製
論文名稱(外文):Design and Implementation of a Single-Phase Bidirectional Inverter Using Interval Type-2 T-S Fuzzy Control Systems
指導教授:余國瑞余國瑞引用關係
指導教授(外文):Yu, Gwo-Ruey
口試委員:張淵智吳財福陳裕愷
口試委員(外文):Chang, Yuan-ChihWu, Tsai-FuChen, Yu-Kai
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:180
中文關鍵詞:IT2 T-S模糊控制系統單相雙向換流器非平行分布補償
外文關鍵詞:IT2 T-S fuzzy control systemsingle-phase bidirectional inverterNon Parallel Distributed Compensation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本文設計區間二型(IT2)T-S模糊控制系統,應用於2kW單相雙向換流器,可操作於市電併聯模式與整流模式。首先推導單相雙向換流器狀態方程式,並加入積分器,擴增狀態空間模型。而前鑑部變數之歸屬函數以區間二型模糊集合表示,建立IT2 T-S模糊模型,結合T-S模糊控制器,建構IT2 T-S模糊閉迴路控制系統。接著透過Lyapunov穩定理論,提出四個系統穩定定理,穩定條件均以線性矩陣不等式(LMI)表示,以求控制增益。定理一為IT2 T-S模糊控制H∞穩定定理,經由H∞性能指標,抑制二極體偏壓。定理二為強健性IT2 T-S模糊控制穩定定理,可抵抗動態系統之模式不確定性。另外,應用非平行分布補償(Non-PDC)方式設計模式控制系統,減少控制器數量,提出定理三為Non-PDC IT2 T-S模糊控制H∞穩定定理,定理四為Non-PDC強健性IT2 T-S模糊控制穩定定理。Non-PDC模糊控制系統優點在於減少模糊規則數量、降低求解增益難度、減少晶片內運算時間及節省晶片成本。最後,經由電腦模擬及實驗驗證,換流器不論操作在市電併聯模式或整流模式,強健性IT2 T-S模糊控制、IT2 T-S模糊控制、Non-PDC強健性IT2 T-S模糊控制、Non-PDC IT2 T-S模糊控制與分切合整控制比較,以強健性IT2 T-S模糊控制系統具有最佳之控制性能。
In this thesis, the interval type-2 (IT2) Takagi-Sugeno (T-S) fuzzy control system is applied to a 2kW single-phase bidirectional inverter, which operates on grid-connection mode and rectification mode. At first, the state-space equation of the single phase bidirectional inverter is derived, and an integrator is added to the IT2 T-S fuzzy control system. The state variable of the integration of error is added to the state-space model. The fuzzy membership functions of the premise variable represent the interval type-2 fuzzy set, and formulate the IT2 T-S fuzzy model. The IT2 T-S fuzzy model together with T-S Fuzzy controller to found the IT2 T-S fuzzy closed-loop control system. Secondly, according to the Lyapunov stability theorem, the systems stability of four conditions are proposed. The conditions are both descried by the form of linear matrix inequality (LMI) to solve the LMI stability conditions to obtain the control gain. Theorem 1 is the H∞ performance stability theorem of the IT2 T-S fuzzy control system. By using the H∞ performance, the diode bias term of the IT2 T-S fuzzy control system is eliminated. Theorem 2 is the stability theorem of the robust stability of the IT2 T-S fuzzy control system. Theorem 2 can resist the model uncertainty of the system dynamics. In addition, by adopting the Non Parallel Distributed Compensation (Non-PDC), we can design the fuzzy systems, and reduce the amount of controllers. Theorem 3 is the H∞ performance stability theorem of the Non-PDC IT2 T-S fuzzy control system. Theorem 4 is the stability theorem of the robust Non-PDC IT2 T-S fuzzy control system. The advantage of the Non-PDC fuzzy control system is in reducing the rule of the fuzzy controllers and the difficulty of obtaining the control gain, saving the operation time of the microprocessor, and saving the cost of the microprocessor. Finally, based on the operation of grid-connection mode and rectification mode, comparison among IT2 T-S fuzzy control, Non-PDC IT2 T-S fuzzy control and Division-Summation control can be observed from the simulated and experimental results. The superiority of the single-phase bidirectional inverter with the robust IT2 T-S fuzzy control will be proved via the results.
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.3 論文大綱 6
第二章 單相雙向換流器系統 7
2.1 再生能源供電系統介紹 7
2.1.1市電併聯模式 7
2.1.2整流模式 8
2.2 雙向換流器動作原理 8
2.2.1 市電併聯模式之開關動作 9
2.2.2整流模式之開關動作 12
2.3 雙向換流器狀態方程式 15
2.3.1 市電併聯模式 15
2.3.2 整流模式 17
2.4 擴增狀態方程式 19
第三章 控制系統設計 22
3.1 IT2 T-S模糊控制系統 22
3.1.1 IT2 T-S模糊模型 25
3.1.2 T-S模糊控制器 26
3.1.3 IT2 T-S模糊穩定定理證明 28
3.2 強健性IT2 T-S模糊控制系統 33
3.2.1 強健性 IT2 T-S模糊模型 34
3.2.2 T-S模糊控制器 35
3.2.3強健性 IT2 T-S模糊穩定定理證明 35
3.3 Non-PDC IT2 T-S模糊控制系統 43
3.3.1 Non-PDC IT2 T-S模糊模型 44
3.3.2 Non-PDC T-S模糊控制器 45
3.3.3 Non-PDC IT2 T-S模糊穩定定理證明 47
3.4 強健性Non-PDC IT2 T-S模糊控制系統 51
3.4.1 強健性Non-PDC IT2 T-S模糊模型 51
3.4.2 Non-PDC T-S模糊控制器 52
3.4.3強健性Non-PDC IT2 T-S模糊穩定定理證明 53
3.5 分切合整控制設計 61
3.5.1 市電併聯模式 62
3.5.2 整流模式 64
第四章 微處理器及周邊電路設計 66
4.1單相雙向換流器電路架構 66
4.2 周邊硬體電路 67
4.2.1 輔助電源電路 67
4.2.2 電壓偵測電路 68
4.2.3 電流回授電路 70
4.2.4電流偵測電路 71
4.2.5 功率開關驅動電路 72
4.2.6 開關互鎖電路 73
4.2.7 緩衝器電路 74
第五章 程式流程規劃 75
5.1 微處理器介紹 75
5.2 系統主程式 76
5.3 輸入捕捉中斷副程式 77
5.4 A/D中斷副程式 78
5.5 責任週期比計算副程式 79
5.6 保護副程式 80
第六章 模擬與實測結果 82
6.1 電氣規格 82
6.2 模擬結果 85
6.2.1 功率模擬 95
6.2.2 抗干擾分析 110
6.2.3 抗模式不確定性分析 114
6.3 實驗結果 118
6.3.1 功率實測 126
6.3.2 抗干擾實驗 145
6.3.3 抗模式不確定性實驗 152
6.3.4 運算時間分析 157
6.3.5 效率分析 158
第七章 結論與未來展望 160
7.1 結論 160
7.2 未來研究方向 160
參考文獻 161


[1]經濟部能源局-陽光屋頂百萬座(2015, September).Available: https://mrpv.org.tw/
[2]Bureau of Energy, Ministry of Economic. (2016, April). Renewable Energy of Installed Capacity [Online]. Available: http://web3.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142
[3]S. V. Araujo, P. Zacharias and R. Mallwitz, “Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems,” IEEE Trans. Industrial Electronics, vol. 57, no 9, pp.3118 - 3128, 2010.
[4]H. Sarnago, O. Lucaia, A. Mediano and J.M. Burdio, “ Analytical model of the half-bridge series resonant inverter for improved power conversion efficiency and performance," IEEE Trans. Power Electronics, vol. 30, no 8, pp.4128-4143, 2015.
[5]T. Nagashima, Wei Xiuqin and T. Suetsugu, “Wave equations, output power, and power conversion efficiency for class-e inverter outside nominal operation,” IEEE Trans. Industrial Electronics, vol. 61, no 4, pp.1799-1810, 2014.
[6]J. J. Chen and C. M. Kung, “A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques,” IEEE Trans. Frequency Control, vol. 57, no 9, pp.1915- 1925, 2010.
[7]H. F. Xiao, X. P. Liu and K. Lan, “Zero-Voltage-Transition Full-Bridge Topologies for Transformerless Photovoltaic Grid-Connected inverter,” IEEE Trans. Industrial Electronics, vol. 61, no 10, pp.5393- 5401, 2014.
[8]F. Hong, J. Liu, B. Ji and Y. Zhou, “Single Inductor Dual Buck Full-Bridge Inverter,” IEEE Trans. Industrial Electronics, vol. 62, no 8, pp.4869- 4877, 2015.
[9]P. S. Ninkovic, “A novel constant-frequency hysteresis current control of PFC converters,” IEEE International Conference on Industrial Symposium, 2002, pp. 1059-1064.
[10]H. Cha, T. kien Vu and J. eon Kim, “Design and control of proportional-resonant controller based photovoltaic power conditioning system,” IEEE Energy Conversion Congress and Exposition, 2009, pp. 2198-2205.
[11]L. Bowtell and A. Ahfock, ”Direct current offset controller for transformerless single-phase photovoltaic grid-connected inverters” IET Renew.Power Generation, Vol. 4, No. 5, pp. 428-437, 2010.
[12]A. Khairy, M. Ibrahim, N. Abdel-Rahim and H. Elsherif, “Comparing proportional-resonant and fuzzy-logic controllers for current controlled single-phase grid-connected PWM DC/AC inverters,” in Proc. IET RPG, 2011, pp.1-6.
[13]S. M. Ayob, Z. Salam and N.A. Azli, “A new optimum design for a single input fuzzy controller applied to DC to AC converters,” Journal of Power Electronics, vol. 10, 2010, pp. 306-312.
[14]A. El Khateb, N. A. Rahim and J. Selvaraj, “Fuzzy logic controller for MPPT SEPIC converter and PV single-phase inverter,” in Proc. IEEE ISIEA, 2011, pp.182-187.
[15]T. F. Wu, K. H. Sun, C. L. Kuo, M. S. Yang and R. C. Chang, “Design and implementation of a 5 kW 1φ bi-directional inverter with wide inductance variation,” in Proc. IEEE ECCE, 2010, pp. 45-52.
[16]T. F. Wu, K. H. Sun, C. L. Kuo and Y. C. Chang, “Current distortion improvement for power compensation with bi-directional inverter in DC-distribution system,” in Proc. EPE/PEMC, 2012, pp.DS3b.10-1 - DS3b.10-7.
[17]T. F. Wu, K. H. Sun, C. L. Kuo, Y. K. Chen, Y. R. Chang and Y. D. Lee, “Integration and operation of a single-phase bidirectional inverter with two Buck/Boost MPPTs for DC-distribution applications,” IEEE Trans. Power Electronics, vol. 28, no 11, pp.5098- 5106, 2013.
[18]T. F. Wu, K. H. Sun, C. L. Kuo and C. H. Chang, “Predictive current controlled 5kW single-phase bidirectional inverter with wide inductance variation for DC-microgrid applications,” IEEE Trans. Power Electronics, vol. 25, no 12, pp.3076- 3084, 2010.
[19]T. F. Wu, K. H. Sun, C. L. Kuo and H. C. Hsieh, “Combined unipolar and bipolar PWM for current distortion improvement during power compensation,” IEEE Trans. Power Electronics, vol. 29, no 4, pp.1702- 1709, 2014.
[20]N. N. Karnik and J. M. Mendel, “Introduction to type-2 fuzzy logic systems,” in Proc. IEEE WCCI, 1998, pp. 915–920.
[21]N. N. Karnik, J. M. Mendel and Q. Liang, “Type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Systems., vol. 7, no. 6, pp. 643-658, 1999.
[22]Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems theory and design,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 535-550, 2000.
[23]J. M. Mendel, R. I. John and F. Liu, “On using type-1 fuzzy set mathematics to derive interval type-2 fuzzy logic systems,” in Proc. IEEE NAFIPS, 2005, pp. 528–533.
[24]N. N. Karnik and J. M. Mendel, “Centroid of type-2 fuzzy set,” Inform. Sci, vol. 132 , pp. 195-220, 2001.
[25]H. Wu and J. M. Mendel, “Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems,” IEEE Trans. Fuzzy Systems., vol. 10, no. 5, pp. 622-639, 2002.
[26]P. Z. Lin, C. M. Lin, C. F. Hsu, and T. T. Lee, “Type-2 fuzzy controller design using a sliding-mode approach for application to DC–DC converters,” IEE Proc. Electr. Power Appl., vol. 152, no. 4, pp. 1482-1488, 2006.
[27]N. Altin, “Single phase grid interactive PV system with MPPT capability based on type-2 fuzzy logic systems,” in Proc. IEEE ICRERA, 2012, pp. 1-6.
[28]P. Z. Lin, C. F. Hsu, and T. T. Lee, “Type-2 fuzzy logic controller design for buck DC-DC converters,” in Proc. IEEE Fuzzy Systems, 2008, pp. 365-370.
[29]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. System, Man, Cybern, vol. SMC-15, no. 1, pp. 116–132, 1985.
[30]H. K. Lam and F. H. F. Leung, “LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi–Sugeno's form,” IEEE Trans. TSMCB, vol. 37, no. 5, pp. 1396-1406, 2006.
[31]K. Tanaka, and H. O. Wang, “Fuzzy control systems design and analysis: a linear matrix inequality approach,” New York: Wiley, John&Sons, Inc., 2001.
[32]H. K. Lam and L. D. Seneviratne, “Stability analysis of interval type-2 fuzzy-model-based control systems,” IEEE Trans. System, Man, Cybern., vol. 38, no. 3, pp. 617–628, 2008.
[33]H. K. Lam and L. D. Seneviratne, “LMI-based stability conditions for interval type-2 fuzzy-model-based control systems,” in Proc. IEEE Fuzzy Systems., 2011, pp. 298-303.
[34]M. Biglarbegian, W. W. Melek and J. M. Mendel,“On the stability of interval type-2 TSK fuzzy logic control systems,” IEEE Trans. System, Man, Cybern., vol. 40, no. 4, pp. 798-818, 2010.
[35]W. W. Melek and J. M. Mendel, “Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments,” IEEE Trans. Industrial Electronics, vol. 58, no. 4, pp. 1371-1384, 2011.
[36]H. Li, X. Sun, L. Wu and H. K. Lam, “State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions,” IEEE Trans. Fuzzy System, vol. 23, no. 6, pp. 1943-1957, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top