跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張景翔
研究生(外文):Ching-Hsiang Chang
論文名稱:在超凸度量空間中的推廣型2-KKM定理及其應用
論文名稱(外文):Generalized 2-KKM theorem in hyperconvex metric spaces and its applications
指導教授:張東輝張東輝引用關係
指導教授(外文):Tong-Huei Chang
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:人資處數學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:18
中文關鍵詞:超凸度量空間2-KKM函數KKM定理固定點定理變分不等式
外文關鍵詞:Hyperconvex metric spaceKKM theoremfixed point theoremvariational inequalityminimax inequality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,我們先定義2-KKM函數及推廣型2-KKM函數,再利用超凸度量空間的特性,我們在不需任何緊緻性的條件下,證得了一個KKM定理及固定點定理。利用這個KKM定理,我們證得一些變分不等式及大中取小不等式的存在性定理。
In this paper, we first define 2-KKM mapping and generalized 2-KKM mapping. Then we apply the property of hyperconvex metric space to get a KKM theorem and a fixed point theorem without compact assumption. By using this KKM theorem we get some theorems about variational inequalities and minimax inequalities.
1.INTRODUCTION
2.PRELIMINARIES
3.MAIN RESULTS
4.APPLICATIONS
5.REFERENCES
[1]N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956) 405-439.
[2]K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989.
[3]S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233.
[4]T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
[5]L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in hyperconvex metric spaces, Nonlinear Anal. In press.
[6]K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310.
[7]A. Granas and F. C. Liu, Coincidence for set valued maps and inequalities, J. Math. Anal. Appl. 165(1986), 119-148.
[8]B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137.
[9]M. A. Khamsi, KKM and Ky Fan Theorems in Hyperconvex Metric Spaces, J. Math. Anal. Appl. 204(1996),298-306.
[10]W. A. Kirk, B. Sims, and G. X .Z. Yuan, The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal. 39(2000), 611-627.
[11]F. J. Liu, On a form of KKM principle and supinfsup inequalities of von Neumann and Ky Fan type, J. Math. Anal. Appl. 155(1991), 420-436.
[12]L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122.
[13]M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983), 151-201.
[14]N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195.
[15]G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top