|
[1]N. Aronszajn, and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6(1956) 405-439. [2]K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989. [3]S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233. [4]T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235. [5]L. A. Dung and D. H. Tan, Some applications of the KKM-mapping principle in hyperconvex metric spaces, Nonlinear Anal. In press. [6]K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310. [7]A. Granas and F. C. Liu, Coincidence for set valued maps and inequalities, J. Math. Anal. Appl. 165(1986), 119-148. [8]B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137. [9]M. A. Khamsi, KKM and Ky Fan Theorems in Hyperconvex Metric Spaces, J. Math. Anal. Appl. 204(1996),298-306. [10]W. A. Kirk, B. Sims, and G. X .Z. Yuan, The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal. 39(2000), 611-627. [11]F. J. Liu, On a form of KKM principle and supinfsup inequalities of von Neumann and Ky Fan type, J. Math. Anal. Appl. 155(1991), 420-436. [12]L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122. [13]M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983), 151-201. [14]N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195. [15]G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389.
|