跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:童翔駿
研究生(外文):Hsiang-Chun Tung
論文名稱:Poly(NIPAM)/甲醇溶液及MEH-PPV/THF溶液物理性質
論文名稱(外文):Physical Properties of Poly(N-isopropylacrylamide)/methanol Semi-dilute Solution and Poly[1-Methoxy-4-(2’-Ethyl-Hexyloxy)-2,5-Phenylene Vinylene]/ Tetrahydrofuran Solution
指導教授:余子隆
指導教授(外文):T.L. Yu
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:170
中文關鍵詞:聚異丙基丙烯醯胺聚[1-甲氧基-4-(2’-乙基-己氧基)-25-苯乙烯]動態光散射原子力顯微鏡
外文關鍵詞:poly(NIPAM)MEH-PPVDLSAFM
相關次數:
  • 被引用被引用:2
  • 點閱點閱:540
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:2
本論文利用動態光散射及動態黏彈儀研究將5 wt%聚異丙基丙烯醯胺(poly(N- isopropyl acrylamide),簡稱poly(NIPAM))/甲醇溶液物理性質。由極限黏度數據得知其重疊濃度C*~ 1 / [η]為約3.012 wt%,所以此溶液為半稀釋溶液 (semidilute solution)。由流變儀量測數據得知poly(NIPAM) /甲醇溶液的黏度隨著溫度的增加而下降,與一般高分子溶液現象相同。所以poly(NIPAM)/甲醇溶液是UCST (upper critical solution temperature)與poly(NIPAM)/水溶液的LCST (lower critical solution temperature)現象相反。動態光散射數據可得知poly(NIPAM)在甲醇溶液中的運動鬆弛時間(relaxation time)隨著散射角增加而逐漸下降。而相關長度ζ不會隨著溫度上升變化。此現象與poly(NIPAM) /水溶液的性質不同。一般文獻報告poly(NIPAM)在水溶液中,在溫度低於LCST(~ 34 ℃)下,poly(NIPAM)的支鏈-CO-NH-CH-(CH3)2與水分子因氫建結合可溶於水中,分子鏈形成coil狀態。隨著溫度上升,因氫鍵解離,水分子逐漸脫離poly(NIPAM),使poly(NIPAM)分子不易溶於水中。而由coil態粒徑逐漸收縮轉變成球(globule)狀態。因此溫度上升,poly(NIPAM)/水溶液黏度會下降,而在溫度高於UCST以上,poly(NIPAM)/水溶液會有“相分離”(phase separation)現象發生。本研究報告顯示poly(NIPAM)在甲醇溶液中無如同poly(NIPAM) /水溶液之現象發生。poly(NIPAM)/甲醇溶液是屬於一般的高分子良溶液(polymer good solution)。
本論文研究0.2 ~ 1.5 wt%聚[1-甲氧基-4-(2’-乙基-己氧基)-2,5-苯乙烯],( (poly[1-methoxy-4-(2’-ethyl-hexyloxy)-2,5-phenylene vinylene],簡稱 MEH-PPV))以四氫呋喃(tetrahydrofuran,THF)溶液中MEH-PPV聚合物的分子形態,以及其對旋轉塗佈薄膜表面形態之影響。我們使用Ubbelohde黏度計及動態光散射研究溶液性質,由極限黏度數據得知MEH-PPV/THF溶液的重疊濃度C*為0.706 。動態光散射實驗數據得知MEH-PPV濃度增加,粒徑在0.6 wt%以下變化不大,但MEH-PPV濃度大於0.7 wt%,則粒徑明顯變大。MEH-PPV/THF溶液經旋轉塗佈薄膜,表面形態以原子力顯微鏡(AFM)觀察可知MEH-PPV濃度較低時,聚合物粒子呈不連續分佈,薄膜表面有明顯的高低起伏波峰。隨著MEH-PPV濃度增加,薄膜表面高低起伏度下降。MEH-PPV濃度高於0.7 wt%以上,薄膜表面形態較為平坦,顯示分子鏈互相重疊。
In this thesis, using dynamic light scattering and dynamic viscoelastic analyzer, we studied the physical properties of 5 wt% poly(NIPAM) (poly(N- isopropyl acrylamide) -methanol solution. The overlap concentration C*, obtained from intrinsic viscosity measurement, was around 3.01 wt%. Thus the present solution is a semidilute solution. The viscosity of poly(NIPAM) -methanol solution decreases with increasing temperature, which behaves similar to the ordinary polymer good solutions with a USCT (upper critical solution temperature). The dynamic light scattering experiment result revealed that the relaxation time decreases with increasing scattering angles. But the correlation length does not vary with increasing temperature. The properties of poly(NIPAM) -methanol solution are different from those of poly(NIPAM) -water solution.
The molecular conformation of MEH-PPV (poly[1-methyoxy-4- (2’-ethyl-hexyloxy)-2,5-phenylene vinylene]) in THF (tetrahydrofuran) solutions with MEH-PPV concentrations ranging 0.2 ~ 1.5 wt% were studied using dynamic light scattering (DLS). The effect of MEH-PPV concentrations on the film surface morphology prepared by spin-coating of MEH-PPV/THF solutions was studied using atomic force microscope (AFM). The overlap concentration C* obtained from intrinsic viscosity measurement was around 0.7 wt%. The experimental results revealed that the MEH-PPV particle. sizes remained a fixed value as MEH-PPV concentration was below 0.6 wt% but as MEH-PPV became larger due to aggregation of polymers. At a MEH-PPV concentration lower than 0.6 wt%, the polymer distribution on the surface of film prepared by spin- coating, obtained from AFM observation was not continuous, with a highly rough surface. As MEH-PPV concentration was higher than 0.7 wt%, the surface of the film prepared from spin-coating continuous and less roughness.
第一篇
一、 前言……………………………………………………………….1
1-1簡介…………………………………………………………...1
1-2研究目的……………………………………………………...5
1-3分子鬆弛運動………………………………………………...7
1-4動態光散射與分子運動……………………………………...8
1-5動態黏彈性…………………………………………………..12
二、 實驗方法與步驟…………………………………………………15
2-1樣品製備……………………………………………………..15
2-1-a原料………………………………………………………...15
2-1-b poly(NIPAM)合成…………………………………………16
2-2極限黏度測定………………………………………………..17
2-3流變儀動態黏彈性測定……………………………………..19
2-3-1樣品配製…………………………………………………...19
2-3-2流變儀動態黏彈性測定…………………………………...19
2-4動態光散射實驗……………………………………………..23
2-4-1樣品配製…………………………………………………...23
2-4-2動態光散射實驗…………………………………………...23
三、 結果與討論………………………………………………………29
3-1 5 wt% poly(NIPAM)/甲醇溶液黏彈性質…………………...29
3-1-1 5 wt% poly(NIPAM)/甲醇溶液的黏性與彈性…………...29
3-1-2 5 wt% poly(NIPAM)/甲醇溶液的貯存與損耗模數……...38
3-2 5 wt% poly(NIPAM)/甲醇溶液動態光散射研究…………...47
四、 結論………………………………………………………………62
五、 未來工作與展望…………………………………………………64
六、 參考文獻…………………………………………………………65
第二篇
一、 前言…………………………………………………..1
1-1共軛導電高分子簡介…………………………………………1
1-2有機發光二極體的發展………………………………………3
1-3共軛導電高分子發光原理……………………………………5
1-4有機發光二極體元件結構……………………………………7
1-4-1單層結構元件……………………………………………….7
1-4-2雙層結構元件………………………………………………8
1-4-3多層結構元件……………………………………………...10
1-4-4可撓曲性元件……………………………………………...10
1-5 MEH-PPV塗佈膜形態學相關文獻回顧……………………11
二、 研究目的…………………………………………………………13
三、 實驗步驟…………………………………………………………14
3-1 MEH-PPV合成……………………………………………...14
3-1-1 MEH-PPV合成化學反應方程式…………………………14
3-1-2藥品………………………………………………………..15
3-1-3使用儀器設備……………………………………………..16
3-2合成步驟……………………………………………………..17
3-2-1 1-甲氧基-4-(2-乙基-己氧基)苯[1-methoxy-4-(2-ethyl-hexyloxy)benzene]之製備………………17
3-2-2 2,5-二甲基氯-1-甲氧基-4-(2-乙基-己氧基)苯[2,5-bis(chloromethyl)-1-methoxy-4-(2-ethyl-hexyloxy) benzene]之製備……………………………………………………………19
3-2-3 MEH-PPV 高分子合成
聚[1-甲氧基-4-(2’-乙基-己氧基)-2,5-苯乙烯] poly[1-methoxy-4-(2’-ethyl-hexyloxy)-2,5-phenylene- vinylene]之合成………………………………………………………………21
3-3 THF含水率測定…………………………………………….23
3-4極限黏度……………………………………………………..23
3-5動態光散射實驗……………………………………………..25
3-6旋轉塗佈……………………………………………………..28
3-7原子力顯微鏡………………………………………………..29
四、 結果與討論………………………………………………………30
4-1 MEH-PPV / THF溶液動態光散射實驗…………………….30
4-2 MEH-PPV / THF溶液旋轉塗佈成膜的AFM數據…..…….57
五、 結論………………………………………………………………90
六、 參考文獻…………………………………………………………91
6-1英文字母區…………………………………………………..91
6-2中文字區……………………………………………………..99
第一篇
[A字母區]
• Aronson M., Lock M., Santos E., “Encapsulated bleach particles for machine dishwashing compositions”, US Patent, 4762637 (1988)
[B字母區]
• Bae Y.H., Okano T., Kim S.W., “On-Off thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water”, Pharm. Res., 8, 531 (1991)
• Berne B. J. and Pecora R., “Dynamic Light Scattering”,John Wiley & Sons, (1976)
• Bailey R. T., North A. M., and Pethrick R. A., “Molecular Motion in High Polymers”,Clarendon Press, Oxford, (1981)
• Binkert Th., Oberreich J., Meewes M., Nyffenegger R., and Ricka J., “Coil-globule transition of PolyNIPAM: A study of segment mobility by fluorescence depolarization”, Macromolecules, 24, 5806 (1991)
• Bokias G., Hourdet D., and Iliopoulos I., “Positively charged amphiphilic polymers based on poly(N-isopropylacrylamide): phase behavior and shear-induced thickening in aqueous solution”, Macromolecules, 33, 2929 (2000)
[C字母區]
• Costa R. O.R., Freitas R. F.S., “Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solution”, polymer, 43, 5879 (2002)
[D字母區]
• Dong L.C., Hoffman A.S., “Synthesis and application of thermally-reversible heterogels for drug delivery”, J. Controlled Release, 14, 21 (1990)
• Dong L.C., Hoffman A.S., “A novel approach for preparation pH-sensitive hydrogels for enteric drug delivery”, J. Controlled Release, 15, 141 (1991)
[E字母區]
• Erbil Candan, Akpinar F. Dilek, Uyanik Nurseli, “Investigation of the thermal aggregation in aqueous poly(N-isopropyl acrylamide—co- itaconic) solution”, Macromol. Chem. Phys., 200, 2448 (1999)
[F字母區]
• Ferry J.D., “Viscosity properties of polymers”, 3rd ED., John Wiley and Sons, New York, 1980
• Fujishige S., Kubota K., and Ando I., “Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmeth- acrylamide)”, J. Phys. Chem., 93, 3311 (1989)
• Fujishige S., “Intrinsic viscosity-molecular weight relationships for poly(N-isopropylacrylamide) solutions”, Polymer Journal, 19, 3,297 (1987)
[H字母區]
• Henkel C., European Patent Application DE-636904 (1986)
• Hoffman A.S., Dong L.C., “A general classification scheme for hydrophilic Am. Chem. Soc. Symp. Ser., 350, 236 (1987)
• Horkay, F., Burchard W., Geissler, E., and Hecht, A. M., “Thermodynamic properties of poly(vinyl alcohol) and poly(vinyl alcohol-vinyl acetate) hydrogels”, Macromolecules, 26, 1296 (1993-a).
• Horkay, F., Burchard, W., Hecht, A-M., and Geissler, E., “Scattering properties of poly(vinyl acetate) gels in different solvents”, Macromolecules, 26, 4203 (1993-b).
• Hsu S.H., Yu T.L., “Dynamic viscoelasticity study of the phase transition of poly(N-isopropylacrylamide)”, Macromol. Rapid Commun. 21, 476 (2000)
[K字母區]
• Kubota K., Fujishige S., and Ando I., “Single-chain transition of poly (N-isopropylacrylamide) in water”, J. Phys. Chem., 94, 5154 (1990)
[L字母區]
• Lion C., Japanese Patent, 149691 (1984)
[M字母區]
• Masci G., Bontempo D., Crescenzi V., “Synthesis and characterization of thermoresponsive N-isopropyl acrylamide / methacrylate pullulan hydrogels” Polymer. 40, 5587 (2002)
• Meewas M., Ricka J., de Sliva M., Nyffenegger R., and Binkert Th., “Coil-globule transition of PolyNIPAM: A study of surfactant effects by light scattering”, Macromolecules, 24, 5811 (1991)
[O字母區]
• Okano T., Bae Y.H., Jacobs H., Kim S.W., “Thermally on-off switching polymers for drug permeation and release”, J. Controlled Release, 11, 255 (1990)
[P字母區]
• Pelton R., Richardson R.,“The effect of temperature and methanol concentration on the properties of poly(N-isopropyl acrylaminde) at the air/solution interface”. Langmuir, 17, 5118 (2001)
• Priest J.H., Murrey S.L., Nelson R.J., Hoffman A.S., Am. Chem. Soc. Symp. Ser., 350, 255 (1987)
[S字母區]
• Snowden M.J., Morgan J., Vincent B., UK Patent, GB2262117A (1993-a)
• Snowden M.J., Marston N.J., Vincent B., Colloid Polym. Sci., 272, 1273 (1994)
• Snowden M.J., Thomas D., Vincent B., Analyst., 118, 1367 (1993-b)
• Snowden M.J., Booty M.T., in Encapsulaton and Controlled Released. Karsa D, Royal Society of Chemistry, Cambridge, 1993-c
• Schild H.G., “Poly(N-isopropylacrylamide):experiment,theory and application”, Prog. Polym. Sci., 17, 163 (1992)
• Staikos G., “Viscometric study of the coil-globule transition of polyNIPAM in solutions of surfactant”, Macromol. Rapid commun., 16, 913 (1995)
[T字母區]
• Tam K.C., Wu X.Y., and Pelton R.H., “PolyNIPAM. Ⅱ. Effect of polymer concentration, temperature, and surfactant on the viscosity of aqueous solutions”, J. Polym. Sci. —A, Polym. Chem. Ed., 31, 963 (1993)
[W字母區]
• Wang X. and Wu C., “light scattering study of coil-to-globule transition of a poly(NIPAM) chain in D2O”, Macromolecules, 32, 4299 (1999)
• Winnik Francoise M., Ringsdorf H. and Venzmer J., “Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylaminde) ”, Macromolecules, 23, 2415 (1990)
• Wu C., Zhou S., “Thermodynamically stable globule state of a single poly(N-isopropylacrylamide) chain in water”, Macromolecules, 28, 5388 (1995-a)
• Wu C., Zhou S., “Laser light scattering study of the phase transition of poly(N-isopropylacrylamide) in water”, Macromolecules, 28, 8381 (1995-b)
[Y字母區]
• Yoshida R., Sakai K., Okano T., Sakurai Y., “On-Off switching mechanism of pulsatile drug release using thermo-responsive poly(N-isopropylacrylamide-co-alkyl methacrylate)gels”, J. -Biomater Sci., Polymer Edn., 6, 585 (1994)
• Yoshida R., Uchida K., Kaneko Y., Sakai K., Kikuchi A., Sakurai Y., Okano T., “Intelligent thermo-responsive hydrogels-mechanism of on-off switches for drug release”, Nature, 374, 240 (1995)
• Yu T.L., Lu W.C., Lin H.L., Chiu C.H., “Solvents effect on the physical properties of semi-dilute poly(NIPAM) solution”, Polymer (in press, 2004)
[Z字母區]
• Zhang G. and Wu C., “The water/methanol complexation induced reentrant coil-to globule-to-coil transition of individual homopolymer chains in extremely dilute solution” J. Am. Chem. Soc., 123, 1376 (2001)
• Zhang G. and Wu C., “Reentrant coil-to-globule-to-coil transition of a single linear homopolymer chain in water/methanol mixture”, Phys. Rev. Lett., 86, 822 (2001)
• Zhang X. Z., Yang Y. Y., amd Chung T. S.,“Effect of mixed solvents on characteristics of poly(N-isopropyl acrylamide) gels”, Langmuir, 18, 2538 (2002)

• Zhou S., Fan S., Au-yeung S.C.F., and Wu C., “Light scattering of poly(NIPAM) in THF and aqueous solution”, Polymer, 36, 1341 (1995)
• Zhu L., Zhu G., Li M., Wang E., Zhu R., Qi X., “Thermosensitive aggregates self-assembled by an asymmetric block copolymer of dendritic polyether an poly(N-isopropylacrylamide)”, European Polymer Journal, 38, 2503 (2002)
【A字母區】
 Atrey M., Li S., Kang E.T., Neoh K.G., Ma Z.H., Tan K.L., Huuang W., “Stability studies of poly(2-methoxy-5-(2’-ethyl hexyloxy)-p-(phenylene vinylene) [MEH-PPV] ”, Polymer Degradation and Stability, 65, 287 (1999)
【B字母區】
 Berggren M., Inganas O., Gustafsson G., “Light-emitting diodes with variable colours from polymer blends”, Nature, 372, 444 (1994)
 Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Mackay K., Friend R. H., Burn P. L. and Holmes A. B., “Light-emitting diodes based on conjugated polymers”, Nature, 347,539 (1990)
 Braun D. and Heeger A. J. “Visible light emission from semiconducting polymer diodes ”, Appl. Phys. Lett., 58, 1982 (1991)
 Baigent D.R., Greenham N.C., Gruner J., Marks R. N., Friend R. H., Moratti S. C. and Holmes A. B., Synth. Met., 67,3 (1994)
 Bradley D. D. C., “Conjugated polymer electroluminescence”, Synth. Met., 54, 401 (1993)
 Bulovic V., Gu G., Burrows P. E., Forrest S. R., “Transparent light-emitting devices”, Nature, 380, 29 (1996)
 Boudrioua A., Hobson P. A., Matterson B., Samuel I. D. W., Barnes W. L., “Birefringence and dispersion of the light emitting polymer MEH-PPV”, Synthetic metal, 111, 545 (2000)
【C字母區】
 Cater S. A., Angelopoulos M., Karg S., Brock P. J., Scott J. C., “Polymeric anodes for improved polymer light-emitting diode performance”, Appl. Phys. Lett., 70,2067 (1997)
 Colvin V. L., Schlamp M. C., Alivisatos A. P., “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer”, Nature, 370, 354 (1994)
 Cao Y., Yu G., Heeger A. J., “Efficient, low operating voltage polymer LEDs with aluminum as the cathode material”, Adv. Mater., 10, 917 (1998)
【F字母區】
 Fletcher P., ”Polymer material promises an inexpensive and thin full-color light-emitting plastic display”, Electronic Design, 8, 42 (1996)
【G字母區】
 Gustafsson G., Cao Y., Treacy G. M., Klavetter F., Colaneri N., Heeger A. J., “Flexible light-emitting diodes made from soluble conducting polymer”, Nature, 357, 477 (1992)
 Greenham N. C., Moratti S. C., Bradley D. D. C., Friend R. H., Holms A. B., “Efficient light-emitting diodes based on polymers with high electron affinities”, Nature, 365, 628 (1993)
 Grem G., Leditzky G., Ullrich B., Leising G., “Realization of a blue light-emitting device using poly(p-phenylene)”, Adv. Mater., 4,36 (1992)
 Gruner J., Hamer P. J., Friend R.H., Huber J., Scherf U., and Holmes A. B., “A high efficiency blue-light-emitting diode based on novel ladder poly(p-phenylene)s”, Adv. Mater., 6, 488 (1994)
 Garten F., Schlatmann A. R., “Light emission in reverse bias operation from poly(3-octylthiophene) based light emitting diodes”, Appl. Phys. Lett., 66, 2540 (1995)
 Gu G., Bulovic V., Burrows P. E., Forrest S. R., “Transparent light-emitting devices”, Appl. Phys. Lett., 68, 2606 (1996)
 Gu G., Shen Z., Burrows P. E., Forrest S. R., “Transparent flexible organic light-emitting devices”, Adv. Mater., 9, 725 (1997)
【H字母區】
 Hamaguchi M., Yoshino K., “Blue eletroluminescence from poly(2,5-diheptyloxy-1,4-phenylene)”, Jpn. J. Appl. Phys., 34, 587 (1995)
 Huber J., Mullen K., Salbeck J., Scherf U., Stern R., “Blue light-emitting diodes based on ladder polymers of the PPP type”, Acta Polymer, 45, 244 (1994)
 Holmes A. B., Bradley D. D. C., Brown A. R., Burroughes P. L., Friend R. H., Greenham N. C., Gymer R.W., Halliday D. A., Jackson R. W., Kraft A., Martens J. H. F., Pichler K. and Samule I. D. W., Synth. Met., 55-57, 4031 (1993)
 Huser T., Yan M., “Aggregation guenching in thin films of MEH-PPV studied by near-field scanning optical microscopy and spectroscopy”, Synthetic metal, 116, 333 (2000)
 Heitz, “vinylene copolymer”, U.S. patent, NO.4,946,937 (1990)
【K字母區】
 Kido J., Nagai N. and Okamoto Y., “Transaction on electron devices”, 40, 1342 (1993)
 Kwon S. H., Paik S. Y., Yoo J. S. “Electroluminescent properties of MEH-PPV light-emitting diodes fabricated on the flexible substrate”, Synthetic Metals, 130, 55 (2002)
【L字母區】
 Lee H. M., Choi K. H., Hwang D. H., Do L. M., Zyung T., Lee J. E., Park J. K., “Use of ionomer as an electron injecting and hole blocking material for polymer light-emitting diode”, Appl. Phys. Lett., 72, 2382 (1998)
【M字母區】
 Moratti S. C., Cervini R., Holms A. B., Baident D. R., Friend R. H., Greenham N. C., Gruner J., Hamer P. J., Synth. Met., 71, 2117 (1995)
【N字母區】
 Nguyen T. Q., Kwong R. C., Thompson M. E., Schwartz B. J., “Improving the performance of conjugated polymer-based devices by control of interchain interactions and polymer film morphology”, Appl. Phys. Lett., V76, 17, 2454 (2000)
 Nabe tain Y., Yamasaki M., Miura A., Tamai N., “Fluorescence dynamics and morphology of electroluminescent polymer in small domains by time-resolved SNOM”, Thin solid Films, 393, 329 (2001)
 Nguyen T. Q., Martini I. B., Liu J., Schwartz B. J., “Controlling interchain interactions in conjugated polymer: The effects of chain morphology on excito-excito annihilation and aggregation in MEH-PPV films”, J. Phys. Chem. B, 104, 237 (2000)
 Nguyen T. Q., Schwartz B. J., Schaller R. D., Johnson J. C., Lee L. F., Haber L. H., and Saykally R. J., “ Near-field scanning optical microscopy (NSOM) studies of the relationship between interchain interactions, morphology, photodamage, and energy transport in conjugated polymer films”,J. Phys. Chem. B, 105, 5153 (2001)
 Neef C. T., Ferraris J. P., “MEH-PPV: improved synthetic procedure and molecular weight control”, Macromolecules, 33, 2311 (2000)
 Nisha A. Iyengar, Benjamin Harrison, Randolph S. Duran, Kirk S. Schanze, and John R. Reynolds, “Morphology evolution in nanoscale light-emitting domains in MEH-PPV/PMMA blends”, Macromolecules, 36, 8978 (2003)
【O字母區】
 (a) Ohmori Y., Uchida M., Yoshino K., “Visible-light electroluminescent diodes utilizing poly(3-alkythiophene)”, Jpn. J. Appl. Phys., Vol. 30, No. 11B, 1938 (1991)
 (b) Ohmori Y., Yoshino K., Uchida M., “Blue electroluminescence diodes utilizing poly(alkyfluorene)”, Jpn. J. Appl. Phys., Vol. 30, No. 11B, 1941 (1991)
 Onoda M., Yoshino K., “Photonluminescence in copolymer of poly(p-phenylene vinylene) and poly(2,5-dimethoxy-p-phenylene vinylene)”, Jpn. J. Appl. Phys., V32, No.1 A/B, 82 (1993)
 Onoda M., Yoshino K., “Heterostructure electroluminescent diodes prepared from self-assembled multilayers of poly(p-phenylene vinylene) and sulfonated polyaniline”, Jpn. J. Appl. Phys., 34, 260 (1995)
【P字母區】
 Pope M., Kallmann H., Magnante P., “Electroluminescence in organic crystals”, J. Chem. Phys., 38, 2042 (1963)
 Parker I. D., Pei Q., Marrcco M., “Efficient electro-luminescence from a fluorinate polyquinoline”, Appl. Phys. Lett., 65, 1272 (1994)
 Pfeiffer S., Hörhold H. H., “synthesis of soluble MEH-PPV and MEH-PPB by HORNER condensation polymerization”, Synthetic Metals, 101, 109 (1999)
【R字母區】
 Rothberg L. J. and Lovinger A. J., J. Mater. Res., 11(12), 3174 (1996)
 Ram M. K., Sarkar N., Bertoncello P., Sarkar A., Narizzano R., Nicolini C., “Fabrication and characterization of MEH-PPV Langmuir-Schaefer films and their application as photoelectrochemical cells”, Synthetic Metals, 122, 369 (2001)
【S字母區】
 Scott J. C., Carter S. A., Karg S., Angelopoulos M., “Polymeric anodes for organic light-emitting diodes”, Synth. Met., 85, 1197 (1997)
 Strukelj M., Papadimitrakopoulos F., Miller T. M., Rothberg L. J., “Design and application of electron-transporting organic materials”, Science, 267, 1969 (1995)
【T字母區】
 Tang C. W., Vanslyke S. A., “Organic electroluminescent diode”, Appl. Phys. Lett., 51, 914 (1987)
【W字母區】
 Wudl F. and Srdanov,G. “conducting polymer formed of poly(2-methoxy-5-(2’-ethyl-hexyloxy)-p-phenylenevinylene)”, U.S. patent, NO.5,189,136 (1993)
【X字母區】
 Xiao Y., Yu W. L., Pei J., Chen Z., Huang W., Heeger A. J., “conjugated copolymers of MEH-PPV and 2,5-dicyano-1,4-phenylene vinylene as materials for polymer light-emitting diodes”, Synthetic metals, 106, 165 (1999)
【Y字母區】
 Yoshino K., Yin X. H., Muro K., Kiyomatsu S., Morita S., Zakhidov A. A., Noguchi T., Ohnishi T., “Marked enhancement of photoconductivity and quenching of luminescence in poly(2,5-dialkoxy-p-phenylene vinylene) upon C60 doping”, Jpn. J. Appl. Phys., V32, 3A, L357 (1992)
 Yang Y., Heeger A. J., “Polyaniline as a transport electrode for polymer light-emitting diodes: low operating voltage and high efficient”, Appl. Phys. Lett., 64, 1245 (1994)
 Yang Y., Westerweele E., Zhang C., Smith P., Heeger A. J., “Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes”, J. Appl. Phys., 77, 694 (1995)
 Yang Y., Pei Q., Heeger A. J., “Efficient blue polymer light-emitting diodes of soluble poly(paraiphenylene)s”, J. Appl. Phys., 79, 934 (1996)
 Yang Y., Shi Y., Liu J., “Device performance and polymer morphology in polymer light emitting diodes: the control of thin film morphology and device quantum efficiency”, J. Appl. Phys, V87, 9, 4254 (2000 a)
 Yang Y., Liu J., Shi Y., Ma L., “Device performance and polymer morphology in polymer light emitting diodes: the control of device electrical properties and metal/polymer contact”, J. Appl. Phys., V88, 2, 605 (2000 b)
 Yang Y., Liu J., Guo T. F., Shi Y., “Solvation induced morphological effects on the polymer/metal contacts”, J. Appl. Phys., V89, 7, 3668 (2001)
【Z字母區】
 Zhang C., Hoger S., Pakbaz K., Wudl F., Heeger A. J., “Yellow electroluminescent diodes utilizing poly(2,5-bis(cholestanoxy)-1,4-phenylene vinylene)”, J. Elec. Mater., 22, 413 (1993)
 Zhang C., Hoger S., Pakbaz K., Wudl F., Heeger A. J., “Improved efficiency in green polymer light-emitting diodes with air-stable electrodes”, J. Elec. Mater., 23, 453 (1994)
 Zheng M., Bai F., Zhu D., “Photophysical process of MEH-PPV solution”, J. Photochem. Photobio. A : Chemistry, 116, 143 (1998)
 曾秋芬, “高分子聚[2-甲氧基-5-(2’-乙基-己氧基)-1,4-苯乙烯]發光二極體製程研究”, 國立台灣大學, 化學研究所 (1999)
 郭騰欽, “摻雜態共軛高分子作為電洞傳遞層之高分子發光二極體特性及其破壞機構的研究”, 國立清華大學, 化學工程研究所 (1999)
 羅元宏, “水溶性自身摻雜聚苯胺作為電洞傳遞層之高分子發光二極體的特性及其破壞機構的探討”, 國立清華大學, 化學工程研究所 (1999)
 金持正, “利用聚對位苯基乙烯高分子材料製作有機發光二集體”, 國立中央大學, 光電科學研究所 (2000)
 李中揚, “ITO電極表面處理對高分子發光二極體效能及壽命的影響”, 國立清華大學, 化學工程研究所 (2000)
 詹文昇, “真空蒸鍍聚合二層/三層有機電致發光元件研究”, 國立清華大學, 材料科學與工程研究所 (2000)
 吳忠幟, “有機薄膜發光二極體及平面顯示器應用”, 光訊, 第73期, 19 (1998)
 莊坤儒“顯示器的明日之星-有機電激,發光顯示器”, 工業材料, 第147期,138 (1990)
 吳忠幟, “有機薄膜發光二極體:元件技術與平面顯示器應用”, 電子資訊, 第四卷, 第二期, 4 (1998)
 陳金源, “發光二極體技術原理”, 工業材料, 第138期, 93 (1998)
 卓錦松, “旋轉塗佈與光碟保護層製作”, 元智大學, 化學工程系(2002)
 劉德厚, “聚[1-甲氧基-4-(2’-乙基-己氧基)-2,5-苯乙烯]旋轉塗佈成膜形態學研究”, 元智大學, 化學工程系(2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top