跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張維運
研究生(外文):Wei-Yun Chang
論文名稱:決定薄膜生物反應槽臨界通量之研究
論文名稱(外文):Critical flux determination of membrane bioreactor
指導教授:游勝傑
指導教授(外文):Sheng-Jie YOU
學位類別:碩士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:106
中文關鍵詞:親疏水性臨界通量薄膜生物反應槽薄膜積垢
外文關鍵詞:critical fluxhydrophobicityMBRfouling
相關次數:
  • 被引用被引用:2
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
近年來薄膜生物處理程序(MBR)在處理廢水之上有很好的效果,但要廣泛的應用MBR需要控制薄膜產生積垢的問題。有研究指出薄膜在次臨界操作中,能有效降低薄膜產生機構的現象。本研究針對中原大學薄膜中心所研發的PTFE薄膜,利用二種批次實驗,測試不同污泥濃度(MLSS)下不同親疏水性之通量與壓力變化,並以五種判斷臨界通量的方法推算薄膜之臨界通量。隨後將薄膜操作在MBR中,觀察五種判斷臨界通量的方法是否能貼近長期真實的次臨界操作,最後再利用不同污泥停留時間(SRT)改變污泥特性,觀察SRT對於臨界通量之影響。本研究發現在批次實驗中,五種判斷方法所決定之臨界通量皆有所不同,並隨MLSS濃度的提高而降低。親疏水性在MLSS濃度小於4,000 mg/L之下有些微影響,但當污泥濃度超過4,000 mg/L之後就無明顯差異。利用積垢速率與滲透性變化之判斷臨界通量的方法,操作30天之後,通量與壓力之比值依然保持穩定,可進行長期操作;但其他三種方法在真實操作之下皆會產生嚴重積垢,操作天數皆低於10天。而MBR操作在高SRT下,雖然MLSS濃度較高,但是薄膜較不易產生積垢;操作在低SRT下,雖然MLSS濃度較低,但薄膜會產生積垢而阻塞。本研究同時發現在長的SRT之下有較大的顆粒與較少的EPS,因此可能是造成薄膜較不易阻塞之原因。
The application of membrane bioreactor (MBR) for the wastewater treatment has gain more advantages recently. However, membrane fouling need to be consider for it’s industrial application. The major parameter which controls the fouling rate.Many study indicated that membrane fouling can be effectively decrease by operating MBR system below critical flux. In the study , the experiment was done uder two batch condition to study the effect of different hydrophobicity of PTFE membrane (CYCU R&D Center for Membrane Technology) and different MLSS concentration on TMP and flux. Long-term performance of reactor was tested using five methods evaluate critical flux under real operation.The effect of different SRT on sludge characteristics and critical flux was also studied.The result showed that the critical flux determined using different methods was different.The critical flux was slighty affected by membrane hydrophobicity at lower MLSS concentration ( <4,000 mg/L) and it was negative at higher MLSS concentration ( >4,000 mg/L). The MBR system can be operated over 30 days by fouling rate and permeability methods due to it’s low fouling rate and below 10 days by other methods. The membrane fouling was observed to be much higher at a short SRT as compared to longer SRT. The result showed that longer SRT the rate of fouling was lower maybe due to lower EPS concentration and higher particle size distribution.
目錄
中文摘要................................................................................................................... I
英文摘要…………………………………………………………………………... II
誌 謝................................................................................................................... Ⅲ
目 錄…………………………………………………………………………... Ⅳ
圖 目 錄................................................................................................................... Ⅵ
表 目 錄................................................................................................................... Ⅸ
第一章 緒論.......................................................................................................... 1
1.1 研究動機.................................................................................................... 1
1.2 研究目的與內容........................................................................................ 3
1.3 研究架構.................................................................................................... 3
第二章 文獻回顧................................................................................................ 5
2.1薄膜生物處理程序(Membrane Bioreactor, MBR)..................................... 5
2.1.1 薄膜分類…………….…………….................................................. 5
2.1.2 薄膜過濾機制…….…………………….………..………………... 8
2.1.3 生物處結合薄膜…………………….…………………………….. 12
2.2 MBR操作指標………………………………….……………………….. 12
2.2.1 臨界通量(critical flux)….……….………………………………… 16
2.2.2 影響臨界通量之因數...…………………………………………… 18
2.2.3長期與短期之次臨界操作………………………………………… 18
2.3 薄膜積垢……………………………………...…………………………. 20
2.3.1 減少積垢之方法…………………………………………………... 21
2.3.2 積垢因子…………………………………………………………... 22
2.3.3 胞外聚合物(extracellular polymeric substances, EPS) …...……… 25
第三章 實驗設備與方法………………………….……………………….… 27
3.1 批次實驗…………………………...………………………….………… 27
3.1.1 污泥來源………………………….……………..………………… 27
3.1.2 批次實驗方法…………………….…………..…………………… 27
3.2 連續實驗………………………….……………………………………... 31
3.2.1 不同方法決定次臨界通量之長期操作…………..………………. 32
3.2.2 不同SRT於次臨界通量下之長期操作………………………….. 34
3.3 實驗分析方法……………………………………………………….…... 35
3.4 實驗分析設備….………………………………………………………... 36
第四章 結果與討論………………………….……………………………….. 37
4.1 臨界通量之決定與比較.………………………………………………... 37
4.1.1 以透膜壓力與通量之圖形決定臨界通量…………...…………… 37
4.1.2 以滲透性之變化決定臨界通量…..………………………………. 41
4.1.3 以積垢速率之變化決定臨界通量……………...…….…………... 46
4.1.4 以壓力差之變化決定臨界通量……………...…………….……... 50
4.1.5 以滯後作用決定臨界通量…………………………...…………… 54
4.1.6 五種方法之綜合比較……………………………………………... 56
4.2 不同判斷方式之長期操作……..…………….…………………………. 60
4.2.1 五種分析方法之結果………………..……………………………. 60
4.2.2分析五種方法之差異性……………………………………………. 68
4.3 不同SRT之長期次臨界操作…………………………………………… 72
4.3.1 不同SRT下之水質分析………………………………………….. 72
4.3.2 不同SRT下之TMP及Flux變化……….………………………. 80
4.3.3 長期操作批次試驗決定之臨界通量………..……………………. 87
第五章 結論與建議………………………….……………………………….. 89
5.1 結論………………………….…………………………………………... 89
5.2 建議………………………….…………………………………………... 90
參考文獻………………………….……………………………………………… 91










圖 目 錄
圖 1.1 研究架構………………………………..………………..………………... 4
圖 2.1 薄膜孔徑與分離物之關係圖……………………………………………... 6
圖 2.2 薄膜過濾機制……………………………………………………..…..…... 9
圖 2.3 不同的過濾方式………………………………….………………...…...… 9
圖 2.4 傳統活性污泥程序與MBR程序之比較…………………………..…….. 11
圖 2.5 臨界通量之階梯試驗……………………………………...………...……. 13
圖 2.6 長期操作與階梯試驗之相關圖………………………...………….……... 19
圖 3.1 階梯試驗模廠示意圖………………………………………………...….... 29
圖 3.2 參數示意圖……………………………………….…………………..…… 30
圖 3.3 長期實驗模廠配置圖(固定MLSS濃度)……………..……………..…… 33
圖 3.4 長期實驗模廠配置圖(控制SRT)…………….…………………………... 34
圖 4.1 薄膜接觸角90度操作在MLSS=6,000 mg/L之TMP變化示意圖…….. 39
圖 4.2 薄膜接觸角70度在不同MLSS濃度下TMP和Flux之變化圖……….. 39
圖 4.3 薄膜接觸角90度在不同MLSS濃度下TMP和Flux之變化圖……….. 40
圖 4.4 薄膜接觸角130度在不同MLSS濃度下TMP和Flux之變化................ 40
圖 4.5 以TMP-Flux之方法在不同污泥濃度下各角度之臨界通量……… 41
圖 4.6 薄膜接觸角=70度之單位時間K值變化………………………….…….. 44
圖 4.7 薄膜接觸角=90度之單位時間K值變化…………………….…….….… 44
圖 4.8 薄膜接觸角=130度之單位時間K值變化……………………………….. 45
圖 4.9 以Permeability之方法在不同污泥濃度下各角度之臨界通量…… 45
圖 4.10 薄膜接觸角70度在不同MLSS濃度之通量與dP/dt變化圖……........... 48
圖 4.11 薄膜接觸角90度在不同MLSS濃度之通量與dP/dt變化圖….……….. 48
圖 4.12 薄膜接觸角130度在不同MLSS濃度之通量與dP/dt變化圖…………. 49
圖 4.13 以Fouling rate之方法在不同污泥濃度下各角度之臨界通量……. 49
圖 4.14 薄膜接觸角70度在不同MLSS濃度下通量與ΔTMP0變化圖.……….. 52
圖 4.15 薄膜接觸角90度在不同MLSS濃度下通量與ΔTMP0變化圖………... 52
圖 4.16 薄膜接觸角130度在不同MLSS濃度下通量與ΔTMP0變化圖……….. 53
圖 4.17 以ΔTMP0之方法在不同污泥濃度下各角度之臨界通量………….. 53
圖 4.18 薄膜接觸角為130度在MLSS= 4,000 mg/L之TMP-Flux圖形……….. 55
圖 4.19 以Hysteresis loop之方法在不同污泥濃度下各角度之臨界通量… 56
圖 4.20 薄膜接觸角70度在各污泥濃度下不同判斷方式之臨界通量…………. 58
圖 4.21 薄膜接觸角90度在各污泥濃度下不同判斷方式之臨界通量…………. 58
圖 4.22 薄膜接觸角130度在各污泥濃度下不同判斷方式之臨界通量………... 59
圖 4.23 二片薄膜利用TMP-Flux決定通量之TMP變化圖………………….…. 61
圖 4.24 二片薄膜利用滲透性決定通量之TMP變化圖……………………….… 62
圖 4.25 利用滲透性判斷方法之薄膜阻抗值……………………………………... 63
圖 4.26 二片薄膜利用dP/dt決定通量之TMP變化圖…………………….…….. 64
圖 4.27 利用積垢速率判斷方法之薄膜阻抗值………………………………..…. 64
圖 4.28 二片薄膜利用ΔPo決定通量之TMP變化圖……………………………. 65
圖 4.29 利用壓力差判斷臨界通量之薄膜阻抗值……………………………..…. 66
圖 4.30 三片薄膜利用滯後作用決定通量之TMP變化圖…………………….… 67
圖 4.31 利用滯後作用決定通量之薄膜阻抗值…………………………….…….. 67
圖 4.32 五種判斷方式之TMP變化圖……. ………………………………….….. 69
圖 4.33 通量與壓力變化速度斜率之關係圖………………………………….….. 69
圖 4.34 五種方法與積垢速率比值和操作天數關係圖………………………...… 71
圖 4.35 各SRT下之COD監控圖………………………………………………… 73
圖 4.36 各SRT下之MLSS濃度………………………………………………….. 73
圖 4.37 各 SRT下之污泥增殖率……………………………………………...….. 74
圖 4.38 各SRT下之粒徑分佈……………………………………………...……… 75
圖 4.39 不同SRT下之EPS……………………………………………….….……. 76
圖 4.40 不同SRT下之P/C比…………………………………………………...… 77
圖 4.41 EPS濃度對於TMP之影響…………………………………………….…. 77
圖 4.42 EPS濃度對於Flux之影響………………………………………………... 78
圖 4.43 反沖洗前之壓力與反沖洗後之壓力差…………………………………... 79
圖 4.44 反沖洗前之通量與反沖洗後之通量差………………………………..…. 79
圖 4.45 薄膜接觸角70度之壓力與通量之變化圖…………………………..…… 81
圖 4.46 薄膜接觸角90度之壓力與通量之變化圖…………………………..…… 82
圖 4.47 薄膜接觸角130度之壓力與通量之變化圖…………………………..….. 82
圖 4.48 各角度之壓力變化圖…………………………………………………...… 84
圖 4.49 各角度之通量變化圖………………………………………………...…… 84
圖 4.50 各角度之總阻抗變化圖…………………………………………………... 85
圖 4.51 接觸角實驗示意圖………………………………………………...……… 85
圖 4.52 改質後薄膜角度監測圖…………………………………………………... 85





表目錄


表 2.1 各種薄膜材料之優缺點…………………………………………………... 7
表 2.2 判斷臨界通量之方法……………………………………………………... 15
表 2.3 階梯試驗文獻……………………………………………………………... 16
表 3.1 合成基質成份……………………………………………………………... 31
表 3.2 合成廢水之水質………………………………………………..…………. 31
表 4.1 薄膜接觸角130度之臨界通量實驗數據…………………….…………... 43
表 4.2 薄膜接觸角130度在不同MLSS濃度下之dP/dt圖…………..………... 47
表 4.3 各污泥濃度下之壓力差…………………………………………………... 51
表 4.4 滯後作用實驗恢復原通量時壓力差百分比………………………….….. 55
表 4.5 利用TMP-Flux判斷方法之薄膜阻抗值…………………..……………... 61
表 4.6 五種方式決定之臨界通量………………………………..………………. 70
表 4.7 五種方法與積垢速率之比值…………………………………………....... 71
Ahmed Zubair, Cho Jinwoo, Lim Byung-Ran, Song Kyung-Guen, and Ahn Kyu-Hong (2007) Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor. J. Membr. Sci., 287, 211-218.

Bacchin P., D. Si-Hassen, Starov V., Clifton M. and Aimar P. (2002) A unifying model for concentration polarization, gel-layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions. Chem. Eng. Sei., 57, 77-91.

Bacchin P. (2004) A possible link between critical and limiting flux for colloidal system consideration of critical deposit formation along a membrane. J. Membr. Sci., 228, 237-241.

Belfort G., Davis R. and Zydney A. (1994) The behavior of suspensions and maeromoleeular solutions in crossflow microfiltration, J. Membr. Sci., 96, 1-58.

Bouhabila E. H., Aim R. B. and Buisson H. (1998) Microfiltration of activated sludge using submerged membrane with air bubbling(application to wastewater treatment). Desalination, 118, 315-322.

Bouhabila E. H., Aim R. B. and Buisson H. (2001) Fouling characterization in membrane bioreactors. Sep. Purif. Technol., 22-23, 123-132.

Brookes A., Judd S., Reid E., Germain E., Smith S., Alvarez H., Le-Clech P., Stephenson T., Turra E. and Jefferson B., (2003) Charcterization and impact of biomass foulants in membrane bioreactors. Prec. 5th IMSTEC International Membrane Science and Technology Conference, UNSW, Sydney, Australia, 10-14 November.

Chang I. S., Lee C. H. and Ahn K. H. (1999) Membrane filtration characteristics in membrane coupled activated sludge system:the effect of floc structure of activated sludge on membrane fouling. Sep. Sci. Technol., 34, 1743-1758.


Chang I. S., Bag S. O., and Lee C. H. (2001) Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Process Biochem., 36, 855-860

Chang In-Soung, Kim Su-Na (2005) Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process.Biochemistry , 40, 1307-1314.

Chang S., Fane A. G. (2002) Filtration of biomass with laboratory-scale submerged hollow fibre modules-effect of operating conditions and module configuration, J. Chem. Biotechnol., 77, 1030- 1038.

Cho B.D., and Fane A.G.. (2002) Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. J. Membr. Sci., 209, 391-403

Cho J., Song K.-G., Lee S.H., and Ahn K.-H. (2005) Sequencing anoxic/anaerobic membrane bioreactor (SAM) pilot plant for advancedwastewater treatment., Desalination, 178, 219–225.

Choi H., Zhang K., Dionysiou D.D., Oerther D.B., and Sorial G.A. (2006) Effect of activated sludge properties and membrane operation conditions on fouling characteristics in membrane bioreactors. Chemosphere, 63, 1699–1708.

Choi Jae-Hoon, and Yong Ng How (2008) Effect of membrane type and material on performance of a submerged membrane bioreactor.Chemosphere, 71, 853-859.

Choo K. H., and Lee, C. H. (1998) Hydrodynamic behaviour of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. Water Res., 32, 3387–3397.

Chang In-Soung, and Kim Su-Na (2005) Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process.Biochemistry , 40, 1307-1314.

Defrance L., Jaffrin M. Y., Gupta B., Paullier P. and Geaugey V. (2000) Contribution of various constituents of activated sludge to membrane bioreactor fouling. Bioresour. Technol., 73, 105-112.

Fan Fengshen, Zhou Hongde, and Husain Hadi (2006) Identification of wasterwater sludge characteristics to predict critical flux for membrane bioreactor processes.Water Res., 40, 205-212.

Field R.W., Wu D., Howell J.A., and Gupta B.B. (1995) Critical flux concept for microfiltration fouling. J. Member. Sci., 100, 259-272.

Frølund B., Griebe T., and Nielsen P.H. (1995) Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol., 43, 755–761.

Gaudy A.F. (1962) Colorimetric determination of protein and carbohydrate. Ind. Water Wastes, 7, 17–22.

Guo Wenshan, Vigneswaran Saravanamuthu , Ngo Huu-Hao, Wen Xing, and Pavan Goteti (2008) Comparison of the performance of submerged membrane bioreactor (SMBR) and submerged membrane adsorption bioreactor (SMABR). Bioresource Technology, 99, 1012–1017.

Hodgson P. A., Leslie, G. L., Schneider, R. P., Fane, A. G., Fell, C. J. D., and Marshall, K. C. (1993) Cake resistance and solute rejection in bacterial microfiltration: The role of the extracellular matrix.’’ J. Membr. Sci., 79, 35–53.

Hong S. P., Bae, T. H., Tak, T. M., Hong, S. and Randall, A. (2002) Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination, 143, 219-228.

Howell J.A., Chua, H.C., Arnot, T.C. (2004) In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history. J. Membr. Sci., 242, 13–19.

Howell, J.A.(1995) Sub-critical flux operation of microfiltration. J.Membr.Sci., 107, 165-171.

Huisman I.H., and Tragardh C.(1999) Particle transport in crossflow microfiltration-I. Effect of hydrodynamics and diffusion. Chem. Eng. Sci., 54, 271-280.

Jacangelo J. G.., Laine J. M., Cumming E. W., and Adham S. S.. (1995) UF with Pretreatment for Removing DBP Precursors. Journal of American Water Works Association, 87, 100-115.


Kim J.S., Lee C.H. and Chang, I.S.(2001) Effect of pump shear on the performance of a crossflow membrane bioreactor. Water Res., 35, 2137-2144.

Kwon D.Y., and Vigneswaran S. (1998) Influence of particle size and surface charge on critical flux of crossflow micrfiltration. Water Sci.Technol., 38, 4-5, 481-488.

Laspidou C.S., and Rittmann, B.E. (2002) A unified theory for extracellular polymeric substances, solublemicrobial products, and active and inert biomass. Water Res., 36, 2711–2720.

Le-Clech P., Jefferson B. and Judd S.J. (2003a) Impact of aeration,solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. J. Membr. Sci., 218, 117-129.

Le-Clech P., Jefferson B., Chang I. S. and Judd S. (2003b) Critical flux determination by the flux-step method in a submerged membrane bioreactor. J. Membr. Sci., 227, 81-93.

Lee J.C., Kim J.S., Kang I.J., Cho M.H., Park P.K., Lee C.H. (2001) Potential and limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor. Water Science and Technology, 43, 59–66.

Lee W., Kang S., Shin H. (2003) Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science, 216, 217–227.

Liu Hong, and Fang Herbert H.P. (2002) Extraction of extracellular polymeric substances (EPS) of Sludges. Journal of Biotechnology, 95, 249–256.

Liu R., Huang X., Wang C., Chen L. and Qian Y. (2000) Study on hydraulic characteristics in a sibmerged membrane bioreactor process. Process Biochem., 36, 249-254.

Madaeni S., Fane A., and Wiley D. (1999) Factors influencing critical flux in membrane filtration of activated sludge. J. Chem. Technol Biotechnol., 74, 539-543.

Manem J., and Sanderson, R. (1996) Membrane bioreactors. In: AWWARF, WRCSA (Eds.), Water Treatment Membrane Processes. McGraw Hill, New York, pp. 17.1–17.31.

Marshall A., Munro P. and Trgkrdh G (1993) The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review. Desalination, 91, 65-108.

Masse A., Sperandio M., Cabassud C. (2006) Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time.Water Res., 40, 2405–2415.

Ognier S., Wisniewski, C., and Grasmick, A. (2001) Biofouling in membrane bioreactors: Phenomenon analysis and modelling. Proc., MBR3 Conf., Cranfield, 29–43.

Ognier S., Wisniewski C., and Grasmick A. (2004) Membrane bioreactor fouling in sub-critical filtration conditions:a local critical flux concept. J. Member. Sci, 229 171-177.

Pirbazari M., Voice T.C., Weber Jr., W. J. (1990) Evaluation of biofilm
development on various natural and synthetic media. Hazardous Waste and Hazardous Materials, 7 , 239–250.

Pollice Alfieri, Brookes Adam , Jefferson Bruce and Judd Simon (2005) Sub-critical flux fouling in membrane bioreactors-a review of recent literature. Desalination, 174 , 221-230.

Psoch C., and Schiewer S. (2005) Critical flux aspect of air sparging and backflushing on membrane bioreactors. Desalination, 175, 61-71.

Rosenberger S., and Kraume, M. (2002) Filterability of activated sludge in membrane bioreactors. Desalination, 146, 373–379.

Stephenson T., Judd S., Jefferson B. and Brindle K. (2000) Membrane bioreactors for wastewater treatment. IWA Publishing. London.

Sutherland I.W., and Kennedy, L., (1996) Polysaccharide lyases from gellan-producing Sphingomonas spp. Microbiology, 142, 867–872.

Sutherland I.W. (1997) Microbial exopolysaccharides—structural subtleties and their consequences. Pure Appl. Chem., 69, 1911–1917.

Tsai H.H., Ravindran V., and Pirbazari M. (2005) Model for predicting the performance of membrane bioadsorber reactor process in water treatment applications. Chemical Engineering Science, 60, 5620–5636.

Urbain V., Mobarry B., De Silva V., Stahl D. A., Rittmann B. E. and Manem J. (1998) Integration of performance, molecular biology and modeling to describe the activated sludge process. Water Sci. Technol., 37, 223-229.

Wang Y., Kim J. H., Choo K. H., Lee Y. S. and Lee C. H. (2000) Hydrophilic modification of polypropylene microfiltration membrane by ozone-induced graft polymerization. J.Membr. Sci., 169, 269-276.

Wen C., Huang X. and Qian Y. (1999) Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration. Process Biochem., 35, 335-340.

Wingender J., Neu, T.R., and Flemming, H.C. (1999) Microbial Extracellular Polymeric Substances: Characterization, Structures and Function. Springer-Verlag, Berlin Heidelberg Chapter 3.

Yamamoto K., Hiasa M., Mahmood T., Matsuo T. (1989) Direct solid–
liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Science and Technology, 21, 43–54.

Ye Y., Le-Clech P., Chen V., Fane A.G.. (2005) Evolution of fouling during crossflow filtration of model EPS solutions. J. Member. Sci, 264 190-199.

Zhang T., and Fang, H.H.P. (2001) Quantification of extracellular polymeric substances in biofilms by confocal laser scanning microscopy. Biotechnol. Lett., 23, 405–409.
Zhou H. and Smith Daniel W. (2001) Advanced technologies in water and wastewater treatment. Can. J. Civ. Eng., 28(S1), 49–66.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊