跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫啟宏
研究生(外文):Chi-Hung Sun
論文名稱:金屬模離心鑄造法研製縮墨鑄鐵及TiC強化縮墨鑄鐵基複合材料
論文名稱(外文):A Study on Metal Mold Centrifugal Casting of Compacted Graphite Cast Iron and Compacted Graphite Cast Iron Based Composites with TiC
指導教授:周兆民
指導教授(外文):Jaw-Min Chou
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:114
中文關鍵詞:離心鑄造縮墨鑄鐵碳化鈦
外文關鍵詞:Centrifugal CastingCompacted Graphite Cast IronTiC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:803
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本實驗是利用改變球化劑添加量(0.19∼0.94wt%)、接種劑添加量(0.4∼1wt%)、重力倍數(70∼110G)、澆鑄溫度(1350∼1420℃)、碳當量(4.08∼4.52wt%)等實驗參數,以探討製程參數對金屬模離心鑄造縮墨鑄鐵顯微組織及機械性質的影響。在得到較佳的縮墨鑄鐵金屬模離心鑄造的製程參數後,利用合金設計方法產生TiC強化顆粒,進行內表層TiC濃度梯度分佈之縮墨鑄鐵基複合材料的研製,改變鈦含量(0∼0.54wt%)、澆鑄溫度(1349∼1394℃)、重力倍數(70∼110G)與接種劑添加量(1∼1.4wt%)並利用顯微結構觀察及定量金相量測,來探討鈦含量與製程參數,對縮墨鑄鐵中TiC的量、大小、雪明探鐵量及基地組織的影響。同時,亦將利用拉伸、衝擊與硬度之測試,瞭解TiC對金屬模離心鑄造縮墨鑄鐵管的強化效果。
實驗結果顯示,殘鎂量在0.013∼0.023wt%時,均可獲得良好的縮狀石墨,當殘鎂量為0.018wt%時,縮墨率最高,可達77.9%;重力倍數與澆鑄溫度亦會對縮墨率造成影響。在澆鑄溫度為1384℃時,有最好的縮墨率,其值為60.1%,且可獲得無碳化物之縮墨鑄鐵管;而重力倍數為70G時有較高的縮墨率,其值為63.6%,而當重力倍數增加時,碳化物生成的傾向亦增加;而當矽含量增加時,可降低碳化物生成,增加基地肥粒鐵量,並使延伸率和衝擊值增加;接種劑添加量的增加,的確有減少碳化物生成的傾向。
在鈦鐵添加後,縮墨率有明顯增加的趨勢,由未添加時的77.9%增加至88%,且成功的鑄造出內表層具有TiC強化顆粒分佈之縮墨鑄鐵基複合材料,實驗發現TiC強化顆粒在縮墨鑄鐵管內呈梯度分佈,也就是內表層TiC的量最多,其次為鑄管中央,而外管壁之TiC量最少。重力倍數為70G時,TiC分佈的層帶厚度最厚,抗拉強度與降伏強度隨重力倍數的增加有約略上升的趨勢;而延伸率與衝擊值隨重力倍數的增加有些微下降的趨勢。澆鑄溫度對基地中石墨的形狀、石墨的面積分率、雪明碳鐵量、肥粒鐵量、波來鐵量與TiC量並沒有顯著的影響;在機械性質方面,抗拉強度、降伏強度與硬度值隨澆鑄溫度的增加而有先上升而後下降的趨勢;延伸率與衝擊值則隨澆鑄溫度的增加而有先下降而後上升的趨勢。接種劑添加量對TiC強化縮墨鑄鐵基複合材料基地中石墨的形狀、石墨的面積分率、雪明碳鐵量、肥粒鐵量、波來鐵量與TiC量並沒有顯著的影響。抗拉強度與降伏強度,隨接種劑添加量的增加而下降;延伸率與衝擊值則隨接種劑添加量的增加而有先上升而後些微下降的趨勢。

Abstract
The effect of process parameters, which include the amounts of spheroidizer (0.19~0.94wt%), the amount of inoculator (0.4~1.0wt%), the times gravity (70~110G), the pouring temperature (1350~1420℃),and the CE value (4.08~4.52%), on the microstructures and mechanical properties of centrifugally cast compacted graphite iron were studied. This data base were applied to develop compacted graphite iron based composite with concentration gradient distribution of TiC particles on the inner surface layer. Some process parameters will be investigated. They are titanium content (0~0.54wt%), the times gravity (70~110G), the pouring temperature (1349~1394℃), and the amount of inoculator (1.0~1.4wt%). The effect of process parameters on the amounts of TiC , microstructures and mechanical properties were investigated.
The results showed that the good compacted graphite shape can be obtained in the residual Mg content between 0.013~0.023wt%. When the residual Mg content at 0.018wt%, we can obtain the best vermicular graphite shape. The amount of carbide increases with increaseing times gravity. The tendency of carbide formation decreases with inccresing CE value. On the other hand, the amounts of ferrite , ductility, and tonghness have opposite tendency with CE values.
The results also revealed that the distribution of TiC particles in the radial direction is in the order of interior region > outside region . For the mechanical properties, the tensile strength increases with increasing the times gravity, but the tendency of ductility is contrary. The tensile strength decreases with increasing the amount of inoculator.

總目錄
中文摘要……………………………………………………………………………Ⅰ
英文摘要………………………………………………………………………… Ⅲ
誌謝…………………………………………………………………………………Ⅳ
總目錄…………………………………………………………………………… Ⅴ
圖目錄…………………………………………………………………………… Ⅷ
表目錄……………………………………………………………………………ⅩⅢ
第一章 前言…………………………………………………………………………1
第二章 前人研究與理論基礎……………………………………………………3
2.1 金屬模離心鑄造…………………………………………………………3
2.1.1 重力倍數……………………………………………………………4
2.1.2 澆鑄溫度……………………………………………………………7
2.2 縮墨鑄鐵……………………………………………………………………7
2.2.1 殘鎂量………………………………………………………………9
2.2.2 接種處理……………………………………………………………12
2.2.3 碳當量………………………………………………………………13
2.2.4 縮墨鑄鐵的特性…………………………………………………13
2.3 複合材料…………………………………………………………………16
2.4 TiC的生成………………………………………………………………18
第三章 實驗方法與步驟…………………………………………………………23
3.1 縮墨鑄鐵及TiC強化縮墨鑄鐵基複合材料之製備……………………23
3.2 試片取樣…………………………………………………………………28
3.3 顯微組織觀察與分析……………………………………………………28
3.3.1 TiC鑑定……………………………………………………………28
3.3.2 顯微組織觀察………………………………………………………28
3.3.3 定量金相量測………………………………………………………30
3.4 機械性質分析……………………………………………………………31
3.4.1 拉伸試驗……………………………………………………………31
3.4.2 衝擊試驗……………………………………………………………31
3.4.3 硬度試驗……………………………………………………………34
第四章 結果與討論………………………………………………………………35
4.1 殘鎂量對離心鑄造縮狀石墨鑄鐵之影響………………………………35
4.1.1 殘鎂量對縮墨鑄鐵顯微組織的影響………………………………37
4.1.2 殘鎂量對縮墨鑄鐵機械性質的影響………………………………37
4.2 接種劑添加量對離心鑄造縮狀石墨鑄鐵之影響………………………43
4.2.1 接種劑添加量對縮墨鑄鐵顯微組織的影響………………………43
4.2.2 接種劑添加量對縮墨鑄鐵機械性質的影響………………………47
4.3 重力倍數對離心鑄造縮狀石墨鑄鐵之影響……………………………50
4.3.1 重力倍數對縮墨鑄鐵顯微組織的影響……………………………50
4.3.2 重力倍數對縮墨鑄鐵機械性質的影響……………………………54
4.4 澆鑄溫度對離心鑄造縮狀石墨鑄鐵之影響……………………………57
4.4.1 澆鑄溫度對縮墨鑄鐵顯微組織的影響……………………………57
4.4.2 澆鑄溫度對縮墨鑄鐵機械性質的影響……………………………60
4.5 矽含量及碳當量對離心鑄造縮狀石墨鑄鐵之影響……………………64
4.5.1 矽含量及碳當量對縮墨鑄鐵顯微組織的影響……………………64
4.5.2 矽含量及碳當量對縮墨鑄鐵機械性質的影響……………………67
4.6 鈦含量對離心鑄造TiC強化縮狀石墨鑄鐵基複合材料之影響………71
4.6.1 鈦含量對TiC強化縮狀石墨鑄鐵基複合材料顯微組織的影響....
……………………………………………………………………71
4.6.2 鈦含量對TiC強化縮狀石墨鑄鐵基複合材料機械性質的影響.
…………………………………………………………………… 80
4.7 重力倍數對離心鑄造TiC強化縮狀石墨鑄鐵基複合材料之影響……83
4.7.1 重力倍數對TiC強化縮狀石墨鑄鐵基複合材料顯微組織的影
響…………………………………………………………………83
4.7.2 重力倍數對TiC強化縮狀石墨鑄鐵基複合材料機械性質的影
響……………………………………………………………………89
4.8 澆鑄溫度對離心鑄造TiC強化縮狀石墨鑄鐵基複合材料之影響……91
4.8.1 澆鑄溫度對TiC強化縮狀石墨鑄鐵基複合材料顯微組織的影
響……………………………………………………………………91
4.8.2 澆鑄溫度對TiC強化縮狀石墨鑄鐵基複合材料機械性質的影
響…………………………………………………………………97
4.9 接種劑添加量對離心鑄造TiC強化縮狀石墨鑄鐵基複合材料之影
響…………………………………………………………………………99
4.9.1 接種劑添加量對TiC強化縮狀石墨鑄鐵基複合材料顯微組織
的影響……………………………………………………………99
4.9.2 接種劑添加量對TiC強化縮狀石墨鑄鐵基複合材料機械性質
的影響……………………………………………………………… 104
第五章 結論…………………………………………………………………… 107
第六章 參考文獻…………………………………………………………………..110

第六章 參考文獻
1. G. F Sergeant , B. Sc , E. R. Evans , “The production and properties of compacted
graphite iron ”, The British Foundryman , 71 , pp115-124, 1978
2. E. R. Evans , J. V. Dawson , “Compacted Graphite Cast Iron and Their Production by
a Single Alloy Addition”, AFS Trans. , 145, pp215-220, 1976.
3. 邱紹成 , “離心鑄造法簡介” , 鑄工 , 22 , pp47-61 , 1979.
4. 劉興杰 , 趙文輝 , “Φ950×1550mm軋輥的離心複合鑄造” , 鑄造 , pp25-30 , 1993.
5. 張雲鵬 , 王琥 ,“離心鑄造白口鐵磨球組織與性能之研究” , 鑄造 , pp17-21,1991.
6. 劉志明 , 姜不居 , “熱模法離心鑄管凝固過程的研究” , 1 , pp8-12 , 1990.
7. E. M.Lowe , “FeWTiC Tungsten and Titanium Carbide Duplex Rolls.”, Rolls 2000 ,
The Institute of Materials , p.116. , 1996.
8. D. Nath , P. K. Rohatgi ., “Segregation of Mica Particles In Centrifugal and Static
Castings of Aluminium/Mica Composites.” , Composites , n 2 , 12 , pp124-128, 1981.
9. A. Banerji. , P. K Rohatgi , W. Reif , “Centrifugal Casting Characteristics of Al-Zircon
Particulate Composites.” , Metall , n.12 , 40 , pp1256-1258, 1986.
10. B. P. Krishnan , H. R. Shetty , “Centrifugally Cast Graphiteic Aluminum with Segregated
Graphite Particles.” , AFS Trans. , 66, pp73-80, 1976.
11. 張寶生 , 陳洪升 , “離心鑄造Al-Fe系金屬間化合物梯度功能材料的組織及耐
磨性研究 ” , 鑄造 , pp1-31 , 1994.
12. 孫道中 , “臥式離心鑄造鑄鐵複合輥套量產技術開發”, 技術園地 , 120 , pp23-28
,1999.
13. C. K. Donoho , Birmingham , “Centrifugal Casting of Steel” , AFS Trans. , 52 , pp313-
332 , 1944.
14. 楊國和 , “金屬模離心鑄造轉速對碳鋼性能之影響”, 鑄工 , 103 , pp17-21 ,1999.
15. 邱紹成,邱春豐,陳清源 , “離心鑄造轉速對13%Cr不鏽鋼鑄件機械性能之影響”, 鑄工 , 27 , pp11-17 ,1980.
16. E. N. Pan , K. Ogi , “Analysis of the Solidification Process of Compacted /Vermicular
Graphite Cast Iron ”, AFS Trans. , 120 , pp509-527, 1982
17. 潘永寧 , “縮狀石墨鑄鐵-石墨顯微組織、凝固形成理論、生產方法、品質管制、
性能及其應用發展(一)”, 鑄工 , 36, pp16-36, 1983.
18. W. Simmons , J. Briggs ,“Compacted Graphite Iron Produced with a Cerium-Calcium
Treatment”, AFS Trans. , 157 , pp367-379 , 1982
19. R.W. Monroe , C.E. Bates, “Some Thermal and Mechanical Properties of Compacted
Graphite Iron”, AFS Trans. , 146 , pp615-624 , 1982
20. J. D. Altstetter , R. M. Nowicki , “Compacted Graphite Iron its Properties and Automotive
Application ”, AFS Trans. , 188 , pp959-970 , 1982
21. S. Hariprasad , S. Seshan , “Structure and Property Studies of Permanent-Molded Gray ,
Compacted and Ductile Irons”, AFS Trans. , 83 , pp561-568 , 1985.
22. C.M. Dunks , K.B. Turner , “Production Compacted Graphite Iron Casting for Brake
Systems”, AFS Trans. , 57 , pp575-586 , 1981.
23. K.Ikawa,Ph.D , T. Ohide, Ph.D , “The Effect of an Additive Containing Titanium(CG
Alloy) on Graphite Structure and Tensile Properties of Cast Iron”, AFS Trans. , 06 ,
pp45-53 , 1984.
24. J. Liu , N.X. Ding , “Effect of Type and Amount of Treatment Alloy on Compacted
Graphite Producced by the Flotret Process”, AFS Trans. , 99 , pp675-685 , 1985.
25. P. Cooper , R. Loper , “Some Properties of Compacted Graphite Cast Iron ”, AFS Trans. , 81 , pp241-248 , 1978.
26. 簡明進 , “縮狀球墨鑄鐵之特性”, 鑄工 , 45 , pp66-72 ,1985.
27. K. P. Cooper , C. R. Loper ,“A Critical Evaluation of Production Compacted Graphite
Cast Iron ”, AFS Trans. , 82 , pp267-272 , 1978.
28. K. P. Cooper , C. R. Loper , “Some Properties of Compacted Graphite Cast Iron ”, AFS
Trans. , 81 , pp241-248 , 1978.
29. H.H.CoRnell, E. N. Pan , “Some Aspects of the Inoculation and Fading of Rara Earth-
Treated Compacted/Vermicular Graphite Cast Iron”,AFS Trans. , 71 , pp401-408 , 1984.
30. E. Borghigiani , C. Marinari , “Compacted Graphite Iron Ingot Molds”, AFS Trans. , 25 , pp529-549 , 1982.
31. 呂傳盛 , “鑄鐵接種之探討”, 鑄工 , 54 , pp18-25 ,1987.
32. 中國材料科學學會 , 鋼鐵材料手冊, p92, 1982.
33. 美國鑄造學會 , 球墨鑄鐵手冊, pp101-298, 1992.
34. G. F. Ruff , T.C. Vert , “Investigation of Compacted Graphite Iron Using a High Sulfur Gray Iron Base ”, AFS Trans. , 118 , pp459-464 , 1979
35. M. J. Laalich , “Compacted Graphite Cast Iron its Properties and Production with a New
Alloy ”, Modern Casting. , July , pp50-52 , 1976.
36. P. A. Green , A. J. Thomas , “Production , Properties and Application of Compacted
Graphite Iron ”, AFS Trans. , 159 , pp569-572 , 1979.
37. 賴志隆 , “金屬基複合材料MMC ” , 機械月刊 , 8 , pp244-252, 1991.
38. 陳炎成 , “金屬基複合材料簡介” , 工業材料 , 85 , pp89-95, 1994.
39. 林美姿 , “2000年新材料發展趨勢-複合材料發展之趨勢” , 材料與社會 , 51 ,
pp70-74, 1991.
40. 中田榮一 , 鑄物 , 52 , 5 , pp292-303.
41. 邱正茂 , “金屬基複合材料之研發現況” , 工業材料 , 85 , pp96-103, 1994.
42. I. A. Ibrahim , F. A. Mohamed , “Particulate reinforced metal matrix composites-a review
” , Journal of Materials Science , 26 , pp1137-1156, 1991.
43. P.K.Rohatgi. , J.K.Kim , “Casting of copper alloys containing dispersed graphite particles
in rotating moulds” , Foundaryman , May , p167-170 , 1998.
44. J. Kretschmer , “Composites in automotive applications-state of the art and prospects.”, Materials Science & Technology , 4, pp757-767 , 1988.
45. S.Biswas , U.Srinivass , S.Seshan , P.K.Rohatgi , “Cast Aluminum-Graphite Composites for Industrial Applications” , AFS Trans. , 71 , pp159-166 , 1980.
46. F. A. Badia , P. K. Rohatgi , “Dispersion of Graphite Particles in Aluminum Castings
Through Injection of the Melt ” , AFS Trans., pp402-406 , 1969.
47. 李秉璋, 梁宗耀, 朝春光 , “陶瓷強化鋅呂銅基複合材料研究”, 鑄工 , 72, pp10-
15, 1992.
48. 佐藤彰 , 鑄物 , 53 , 12 , pp42-47.
49. R.G. Riek , M. C.Flemings., “Preparation and Casting of Metal-Particulate Non-Metal
Composites.” , Materials Science and Engineering , A133 , pp69-76, 1991.
50. S.J.Harris , “Cast metal matrix Composites” , Materials Science & Technology, 4 , pp231
-239, 1988.
51. D.M.Goddard ,“Report on Graphite/Magnesium Castings ”,Metal Progress,Apr , pp49-
52 , 1984.
52. C. Raghunath , “In Situ Technique For Synthesizing Fe-TiC Composites.” , Scripta
Metallurgica et Materialia , n.4 , 32 , pp577-582 , 1994.
53. Agarwal and N.B.Dahotre , “Pulsed Electrode Surfacing of Steel with TiC Coating :
Microstructure and Wear Properties.” , Journal of Materials Engineering and
Performance ,No.4 , 8 , pp479-486 , 1999.
54. The Materials information society , ASM Handbook , 3 , p.20-205, 1973.
55. B. S. Terry and O. Chinymakobvu ,“Carbothermic Reductoion of Illmenite and Rutile
as Means of Production of Iron Base Ti(O,C) Metal Matrix.” , Materials Science and
Technology , 7 , pp842-848, 1991.
56. B.S.Terry and O.Chinymakobvu ,“In Situ Production of Fe-TiC Composites By Reactions
In Liquid Iron Alloys.”, Journal of materials science letters , 10 , pp628-629, 1991.
57. W.H.Jiang , W.D.Pan, G. H. Song , X. L. Han ,“In-Situ Synthesis of a TiC-Fe Composite
In Liquid Iron.” , Journal of Materials Science litters , 16 , pp1830-1832, 1997.
58. Subhash Khatri and Michael Koczak ,“Formation of TiC in Situ Prodessed Composites
Via solid-gas , solid —liquid and liquid-gas reaction in molten Al-Ti”,A162 , pp153-162,
1993.
59. 佐藤 ,目黑 ,高橋:鑄物 , 53 , 7 , pp354-358 , 1981.
60. Seong-Hun Choo , Sunghak Lee , and Soon-Ju Kwon , “Effect of Flux Addition on The
Microstructure and Hardness on TiC-Rinforced Ferrous Surface Composite Layers
Fabricated by High-Energy Electron Beam Irradiation.” , Metallurgical and Materials
Transactions A ,30A , pp3131-3141, 1999.
61. A.R. Kennedy , S.M. Wyatt , “The effect of processing on the mechanical propecties and
interfacial strength of aluminium/TiC MMCs”, Composites Science and Technology, 60 ,
pp307-314 , 2000.
62. B. S. Terry and O. S. Chinyamakobvu , “Dispersion and Reaction of TiC In Liquid Iron
Alloys”, Materials Science and Technology , 8 , pp399-405, 1992.
63. 李泳萱,金屬模離心鑄造法研製梯度分佈TiC強化球墨鑄鐵基複合材料, p.39,
2000.
64. 許光奎,陳璟琚 , 釩鈦鑄鐵與釩鈦鑄鋼, pp3-4 ,1

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文