|
[1] K. Eshraghian, ``SoC emerging technologies,'' Proceedings of the IEEE, vol. 94, no. 6, pp. 1197--1213, 2006. [2] X. Zou, X. Xu, L. Yao, and Y. Lian, ``A 1-V 450-nW fully integrated programmable biomedical sensor interface chip,'' Solid-State Circuits, IEEE Journal of, vol. 44, no. 4, pp. 1067--1077, 2009. [3] F. Zhang, J. Holleman, and B. P. Otis, ``Design of ultra-low power biopotential amplifiers for biosignal acquisition applications,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 6, no. 4, pp. 344--355, 2012. [4] S.-Y. Peng, G. Gurun, C. M. Twigg, M. S. Qureshi, A. Basu, S. Brink, P. E. Hasler, and F. Degertekin, ``A large-scale reconfigurable smart sensory chip,'' in Circuits and Systems(ISCAS), IEEE International Symposium on, pp. 2145--2148, 2009. [5] K. Odame and B. Minch, ``Implementing the lorenz oscillator with translinear elements,'' Analog Integrated Circuits and Signal Processing, vol. 59, no. 1, pp. 31--41, 2009. [6] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol, F. Baskaya, C. M. Twigg, and P. Hasler, ``A floating-gate-based field-programmable analog array,'' Solid-State Circuits, IEEE Journal of, vol. 45, no. 9, pp. 1781--1794, 2010. [7] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, ``An analog programmable multidimensional radial basis function based classifier,'' Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, no. 10, pp. 2148--2158, 2007. [8] P. Pavan, L. Larcher, and A. Marmiroli, Floating Gate Devices: Operation and Compact Modeling. Springer, 2004. [9] Y. Leblebici and S.-M. Kang, ``Modeling and simulation of hot-carrier-induced device degradation in MOS circuits,'' Solid-State Circuits, IEEE Journal of, vol. 28, no. 5, pp. 585--595, 1993. [10] S. S. Chung, C.-M. Yih, S.-M. Cheng, and M.-S. Liang, ``A new technique for hot carrier reliability evaluations of flash memory cell after long-term program/erase cycles,'' Electron Devices, IEEE Transactions on, vol. 46, no. 9, pp. 1883--1889, 1999. [11] Y. Ma, T. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C.-H. Wang, H. Nguyen, T. Humes, and C. Diorio, ``Reliability of pFET EEPROM with 70-atunnel oxide manufactured in generic logic CMOS processes,'' Device and Materials Reliability, IEEE Transactions on, vol. 4, no. 3, pp. 353--358, 2004. [12] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, ``A precision CMOS amplifier using floating-gate transistors for offset cancellation,'' Solid-State Circuits, IEEE Journal of, vol. 42, no. 2, pp. 280--291, 2007. [13] V. Srinivasan, G. J. Serrano, C. M. Twigg, and P. Hasler, ``A floating-gate-based programmable CMOS reference,'' Solid-State Circuits, IEEE Journal of, vol. 55, no. 11, pp. 3448--3456, 2008. [14] D. W. Graham, E. Farquhar, B. Degnan, C. Gordon, and P. Hasler, ``Indirect programming of floating-gate transistors,'' Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, no. 5, pp. 951--963, 2007. [15] R. Yazicioglu, S. Kim, T. Torfs, H. Kim, and C. Van Hoof, ``A 30 uW analog signal processor ASIC for portable biopotential signal monitoring,'' Solid-State Circuits, IEEE Journal of, vol. 46, no. 1, pp. 209--223, 2011. [16] C. Qian, J. Parramon, and E. Sanchez-Sinencio, ``A micropower low-noise neural recording front-end circuit for epileptic seizure detection,'' Solid-State Circuits, IEEE Journal of, vol. 46, no. 6, pp. 1392--1405, 2011. [17] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, ``A low-power integrated circuit for a wireless 100-electrode neural recording system,'' Solid-State Circuits, IEEE Journal of, vol. 42, no. 1, pp. 123-- 133, 2007. [18] C. M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, W. Eberle, C. Bartic, R. Puers, and G. Gielen, ``A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 6, no. 2, pp. 101--110, 2012. [19] J. Lee, H.-G. Rhew, D. R. Kipke, and M. P. Flynn, ``A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC,'' Solid-State Circuits, IEEE Journal of, vol. 45, no. 9, pp. 1935--1945, 2010. [20] M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, ``A batterypowered activity-dependent intracortical microstimulation IC for brain-machinebrain interface,'' Solid-State Circuits, IEEE Journal of, vol. 46, no. 4, pp. 731--745, 2011. [21] R. R. Harrison and C. Charles, ``A low-power low-noise CMOS amplifier for neural recording applications,'' Solid-State Circuits, IEEE Journal of, vol. 38, no. 6, pp. 958- -965, 2003. [22] W. Wattanapanitch, M. Fee, and R. Sarpeshkar, ``An energy-efficient micropower neural recording amplifier,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 1, no. 2, pp. 136--147, 2007. [23] M. Chae, J. Kim, and W. Liu, ``Fully-differential self-biased bio-potential amplifier,'' Electronics letters, vol. 44, no. 24, pp. 1390--1391, 2008. [24] V. Majidzadeh, A. Schmid, and Y. Leblebici, ``Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 5, no. 3, pp. 262--271, 2011. [25] L. Liu, X. Zou, W. Goh, R. Ramamoorthy, G. Dawe, and M. Je, ``800 nW 43 nV/ p Hz neural recording amplifier with enhanced noise efficiency factor,'' Electronics letters, vol. 48, no. 9, pp. 479--480, 2012. [26] J. Guo, J. Yuan, J. Huang, J.-Y. Law, C.-K. Yeung, and M. Chan, ``32.9 nv/ p Hz 60.6 dB THD dual-band micro-electrode array signal acquisition IC,'' Solid-State Circuits, IEEE Journal of, vol. 47, no. 5, pp. 1209--1220, 2012. [27] Y. Tseng, Y. Ho, S. Kao, and C. Su, ``A 0.09 W low power front-end biopotential amplifier for biosignal recording,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 6, no. 5, pp. 508--516, 2012. [28] W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, S.-T. Chang, M.-D. Ker, C.- Y. Lin, Y.-C. Huang, C.-W. Chou, et al., ``A fully integrated 8-channel closed-loop neural-prosthetic SoC for real-time epileptic seizure control,'' in Solid-State Circuits Conference Digest of Technical Papers(ISSCC), IEEE International, pp. 286--287, 2013. [29] R. R. Harrison, ``The design of integrated circuits to observe brain activity,'' Proceedings of the IEEE, vol. 96, no. 7, pp. 1203--1216, 2008. [30] M. Steyaert and W. Sansen, ``A micropower low-noise monolithic instrumentation amplifier for medical purposes,'' Solid-State Circuits, IEEE Journal of, vol. 22, no. 6, pp. 1163--1168, 1987. [31] A. M. Sodagar, G. E. Perlin, Y. Yao, K. Najafi, and K. D. Wise, ``An implantable 64- channel wireless microsystem for single-unit neural recording,'' Solid-State Circuits, IEEE Journal of, vol. 44, no. 9, pp. 2591--2604, 2009. [32] A. Rodriguez-Perez, J. Ruiz-Amaya, M. Delgado-Restituto, and A. Rodriguez- Vazquez, ``A low-power programmable neural spike detection channel with embedded calibration and data compression,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 6, no. 2, pp. 87--100, 2012. [33] A. Basu, S. Ramakrishnan, C. Petre, S. Koziol, S. Brink, and P. E. Hasler, ``Neural dynamics in reconfigurable silicon,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 4, no. 5, pp. 311--319, 2010. [34] S. Nease, S. George, P. Hasler, S. Koziol, and S. Brink, ``Modeling and implementation of voltage-mode CMOS dendrites on a reconfigurable analog platform,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 6, no. 1, pp. 76--84, 2012. [35] C. Huang, P. Sarkar, and S. Chakrabartty, ``Rail-to-rail, linear hot-electron injection programming of floating-gate voltage bias generators at 13-bit resolution,'' Solid- State Circuits, IEEE Journal of, vol. 46, no. 11, pp. 2685--2692, 2011. [36] S.-Y. Peng, M. S. Qureshi, P. E. Hasler, A. Basu, and F. L. Degertekin, ``A chargebased low-power high-SNR capacitive sensing interface circuit,'' Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 55, no. 7, pp. 1863--1872, 2008. [37] S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, and E. Sanchez-Sinencio, ``A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications,'' Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 47, no. 12, pp. 1391--1398, 2000. [38] X. Qian, Y. P. Xu, and X. Li, ``A CMOS continuous-time low-pass notch filter for EEG systems,'' Analog Integrated Circuits and Signal Processing, vol. 44, no. 3, pp. 231--238, 2005. [39] P. Corbishley and E. Rodriguez-Villegas, ``A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 1, no. 3, pp. 163--171, 2007. [40] S.-Y. Lee and C.-J. Cheng, ``Systematic design and modeling of a OTA-C filter for portable ECG detection,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 3, no. 1, pp. 53--64, 2009. [41] M. Yang, J. Liu, Y. Xiao, and H. Liao, ``14.4 nW fourth-order bandpass filter for biomedical applications,'' Electronics letters, vol. 46, no. 14, pp. 973--974, 2010. [42] E. Rodriguez-Villegas, A. J. Casson, and P. Corbishley, ``A subhertz nanopower lowpass filter,'' Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 58, no. 6, pp. 351--355, 2011. [43] J. L. Bohorquez, M. Yip, A. P. Chandrakasan, and J. L. Dawson, ``A biomedical sensor interface with a sinc filter and interference cancellation,'' Solid-State Circuits, IEEE Journal of, vol. 46, no. 4, pp. 746--756, 2011. [44] R. Sarpeshkar, R. F. Lyon, and C. Mead, ``A low-power wide-dynamic-range analog VLSI cochlea,'' in Neuromorphic systems engineering, pp. 49--103, Springer, 1998. [45] C. D. Salthouse and R. Sarpeshkar, ``A practical micropower programmable bandpass filter for use in bionic ears,'' Solid-State Circuits, IEEE Journal of, vol. 38, no. 1, pp. 63--70, 2003. [46] A. G. Katsiamis, E. Drakakis, and R. F. Lyon, ``A biomimetic, 4.5W, 120 dB, logdomain cochlea channel with AGC,'' Solid-State Circuits, IEEE Journal of, vol. 44, no. 3, pp. 1006--1022, 2009. [47] M. Tuckwell and C. Papavassiliou, ``An analog gabor transform using sub-threshold 180-nm CMOS devices,'' Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 56, no. 12, pp. 2597--2608, 2009. [48] A. Casson and E. Rodriguez-Villegas, ``A 60 pW Gm-C continuous wavelet transform circuit for portable EEG systems,'' Solid-State Circuits, IEEE Journal of, vol. 46, no. 6, pp. 1406--1415, 2011. [49] L. Acosta, M. Jimenez, R. G. Carvajal, A. J. Lopez-Martin, and J. Ramirez-Angulo, ``Highly linear tunable CMOS low-pass filter,'' Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 56, no. 10, pp. 2145--2158, 2009. [50] S. Koziel and S. Szczepanski, ``Design of highly linear tunable CMOS OTA for continuous-time filters,'' TCASII, vol. 49, no. 2, pp. 110--122, 2002. [51] E. Rodriguez-Villegas, A. Yufera, and A. Rueda, ``A 1.25-V micropower Gm-C filter based on FGMOS transistors operating in weak inversion,'' Solid-State Circuits, IEEE Journal of, vol. 39, no. 1, pp. 100--111, 2004. [52] X. Zhang and E. El-Masry, ``A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters,'' Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, no. 6, pp. 1204--1212, 2007. [53] P. M. Furth and H. A. Ommani, ``Low-voltage highly-linear transconductor design in subthreshold CMOS,'' in IEE Proceedings-Circuits, Devices and Systems, vol. 1, pp. 156--159, 1997. [54] A. Veeravalli, E. Sanchez-Sinencio, and J. Silva-Martinez, ``Transconductance amplifier structures with very small transconductances: a comparative design approach,'' Solid-State Circuits, IEEE Journal of, vol. 37, no. 6, pp. 770--775, 2002. [55] T.-Y. Wang, M.-R. Lai, C. M. Twigg, and S.-Y. Peng, ``A fully reconfigurable lownoise biopotential sensing amplifier with 1.96 noise efficiency factor,'' Biomedical Circuits and Systems, IEEE Transactions on, vol. 8, no. 3, pp. 411--422, 2014. [56] C. Mead and M. Ismail, Analog VLSI implementation of neural systems. Springer, 1989. [57] F. Krummenacher and N. Joehl, ``A 4-MHz CMOS continuous-time filter with onchip automatic tuning,'' Solid-State Circuits, IEEE Journal of, vol. 23, no. 3, pp. 750- -758, 1988. [58] T. Delbruck, ``Bump'circuits for computing similarity and dissimilarity of analog voltages,'' in Neural Networks(IJCNN), International Joint Conference on, vol. 1, pp. 475--479, 1991. [59] H. Tanimoto, M. Koyama, and Y. Yoshida, ``Realization of a 1-V active filter using a linearization technique employing plurality of emitter-coupled pairs,'' Solid-State Circuits, IEEE Journal of, vol. 26, no. 7, pp. 937--945, 1991. [60] S. Rai, J. Holleman, J. N. Pandey, F. Zhang, and B. Otis, ``A 500 W neural tag with 2 V rms AFE and frequency-multiplying MICS/ISM FSK transmitter,'' in Solid- State Circuits Conference Digest of Technical Papers(ISSCC), IEEE International, pp. 212--213, 2009. [61] P. M. Furth, ``A continuous-time bandpass filter implemented in subthreshold CMOS with large-signal stability,'' in Midwest Symposium on Circuits and Systems, vol. 40, pp. 264--267, 1997. [62] A. Tajalli and Y. Leblebici, ``A widely-tunable and ultra-low-power MOSFET-C filter operating in subthreshold,'' in Custom Integrated Circuits Conference(CICC), IEEE, pp. 593--596, 2009. [63] H. Le-Thai, H.-H. Nguyen, H.-N. Nguyen, H.-S. Cho, J.-S. Lee, and S.-G. Lee, ``An IF bandpass filter based on a low distortion transconductor,'' Solid-State Circuits, IEEE Journal of, vol. 45, no. 11, pp. 2250--2261, 2010. [64] C. Garcia-Alberdi, A. Lopez-Martin, L. Acosta, R. G. Carvajal, and J. Ramirez- Angulo, ``Tunable class AB CMOS Gm-C filter based on quasi-floating gate techniques,'' Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60, no. 5, pp. 1300--1309, 2013. [65] R. C. Eberhart and J. Kennedy, ``A new optimizer using particle swarm theory,'' in Proceedings of the sixth international symposium on micro machine and human science, vol. 1, pp. 39--43, 1995. [66] J. Kennedy and R. C. Eberhart, ``Particle swarm optimization,'' in Neural Networks. Proceedings., IEEE International Conference on, vol. 4, pp. 1942--1948, 1995. [67] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, ``Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,'' Evolutionary Computation, IEEE Transactions on, vol. 10, no. 3, pp. 281--295, 2006.
|