跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李柏源
研究生(外文):Po-Yuan Lee
論文名稱:聚甲基丙烯酸甲酯/氧化鋅奈米複合材料製備與物性分析
論文名稱(外文):Preparation and Physical Properties of Polymethyl methacrylate/Zinc oxide Nanocomposites
指導教授:吳震裕
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:聚甲基丙烯酸甲酯氧化鋅共聚物分散性
外文關鍵詞:PMMAZnOCopolymerDispersion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中主要目的為製備無機物粒子分散性良好的氧化鋅/聚甲基丙烯酸甲酯(ZnO/PMMA)奈米高分子複合材料。先以溶液聚合法製備丙烯酸(Acrylic acid, AA)、丙烯酸丁酯(Butyl acrylate, BA)與甲基丙烯酸甲酯(Methyl methacrylate, MMA)的高分子共聚合物(ABM共聚物),並改變三種單體的比例各為AA:BA:MMA = 1:2:7、2:2:6與3:2:5,進而製備出三種有不同AA含量的ABM共聚物。
將ZnO粒子與ABM共聚物以溶液摻混方式混合後,經XRD與FTIR等分析可得知ABM共聚物中的羧酸(Carboxylic acid)官能基會溶解ZnO的晶格結構並吸附於ZnO粒子表面上;由沉降實驗可觀察得知,ABM共聚物可提升ZnO粒子在親油性有機溶劑中的分散穩定性。
進一步以溶液摻混法、塊狀聚合法與熔融混煉法等三種方式製備ZnO/PMMA奈米高分子複材,使用ABM共聚物作為ZnO粒子PMMA基材中的分散劑,利用ABM共聚物中的羧酸官能基與ZnO粒子表面產生吸附反應,而共聚物中親油性的高分子鏈段可與PMMA基材相容。由XRD分析得知當複材中的ABM共聚物的AA比例越高時,其溶解ZnO粒子的現象就越嚴重;由DSC與DMA分析得知ZnO粒子與ABM共聚物並不會對PMMA高分子的玻璃轉移溫度與機械強度有顯著的影響;由TGA分析得知ZnO粒子可有效地提升PMMA高分子的熱穩定性,而複材中加入易熱裂解的ABM共聚物卻會降低PMMA高分子的熱穩定性;由UV-vis分析得知當PMMA基材中加入ZnO粒子時會大幅降低可見光(550 nm) 對ZnO/PMMA複材薄膜之透射度,而複材中加入ABM共聚物會則會提升ZnO/PMMA複材薄膜的可見光之透射度,顯示ABM共聚物可改善ZnO粒子於PMMA基材中的分散性;而由SEM與TEM分析亦可以觀察出當ZnO/PMMA複材中加入ABM共聚物時,其ZnO粒子的分散情形較鬆散且分散範圍較廣;另外,當ABM共聚物中AA的比例越高時,其幫助ZnO粒子分散的功能就越顯著,由此可知ABM共聚物中的羧酸官能基是本研究中提升ZnO粒子分散性的一個主要因素。
The main purpose of this study is to fabricate zinc oxide/polymethyl methacrylate (ZnO/PMMA) nanocomposites with well-dispersed ZnO nanoparticles. Firstly, we used solution polymerization to prepare the copolymers (ABM copolymers) made of acrylic acid (AA), butyl acrylate (BA) and methyl methacrylate (MMA), and the ratios of these three monomers (AA:BA:MMA) had been respectively varied to 1:2:7, 2:2:6 and 3:2:5.
In the following experiments, we used solution blending method to mix ZnO nanoparticles and ABM copolymers together. In XRD and FTIR analysis, we found that the carboxylic acid groups of ABM copolymer could dissolve ZnO crystalline and adsorbed onto the surface of ZnO nanoparticles. In the sedimentation test, we observed that ABM copolymers enhanced the stability of dispersion of ZnO nanoparticles in the hydrophobic organic solvent.
Furthermore, we used solution blending, bulk polymerization and melt blending method to fabricate ZnO/PMMA nanocomposites. The ABM copolymers had been used as compatibilizers for ZnO nanoparticles dispersed in PMMA matrix. The carboxylic acid groups of ABM copolymers can adsorb onto the surface of ZnO nanoparticles, and the hydrophobic moiety of ABM copolymers can compatibilize with PMMA matrix. Via XRD analysis, we found that the ZnO nanoparticles had been dissolved more severely as the portion of acrylic acid in the ABM copolymer raised. In DSC and DMA analysis, we found that ZnO nanoparticles and ABM copolymers had no apparent influence on the glass transition temperature and the mechanical strength of PMMA matrix. Data from TGA analysis indicate that ZnO nanoparticles evidently enhance the thermal stability of PMMA matrix. However, the addition of the easily decomposed ABM copolymers in PMMA reduces the thermal stability of PMMA matrix. Via UV-vis analysis, we observed that adding ZnO nanoparticles into PMMA matrix dramatically decreased the transparency of ZnO/PMMA nanocomposites films. Whereas adding ABM copolymers into ZnO/PMMA nanocomposites as the compatibilizers can increase the transparency of ZnO/PMMA nanocomposites films. Hence, it’s obvious that the ABM copolymers improved the dispersibility of ZnO nanoparticles in PMMA matrix. After inspected by SEM and TEM analysis, we found that if ZnO/PMMA nanocomposites containing ABM copolymers as compatibilizers, ZnO nanoparticles would loosely and widely disperse in PMMA matrix. In addition, the capability of ABM copolymer to improve the dispersibility of ZnO nanoparticles increases with the portion of acrylic acid in the ABM copolymer. Therefore, we suggest that the amount of carboxylic acid groups in ABM copolymer is one of the important factors to aid the dispersion of ZnO nanoparticles in PMMA matrix.
中文摘要 I
英文摘要 II
謝誌 IV
目錄 V
表目錄 VII
圖目錄 VIII
一、緒論 1
1.1 前言 1
1.2 研究動機與目的 5
1.3 研究方法 5
1.4 研究架構與流程 6
二、文獻回顧 10
2.1 氧化鋅粒子之相關文獻 10
2.2 無機物粒子表面改質與分散性之相關文獻 13
2.3 無機物粒子/聚甲基丙烯酸甲酯之奈米複材之相關文獻 21
2.4 氧化鋅粒子/高分子之奈米複材之相關文獻 22
三、實驗 33
3.1 實驗儀器 33
3.2 實驗藥品 35
3.3 實驗步驟 37
四、結果與討論 41
4.1 AA-BA-MMA共聚物製備 41
4.1.1 紅外線光譜之官能基定性分析 42
4.1.2 酸鹼滴定測量AA-BA-MMA共聚物中酸根之含量 43
4.1.3 熱性質分析 43
4.2 溶液摻混法製備ZnO粒子與ABM共聚物之混合物 43
4.2.1 ZnO粒子之晶格分析 44
4.2.2 紅外線光譜之官能基定性分析 45
4.2.3 熱性質分析 46
4.2.4 光學性質分析 47
4.2.5 ZnO粒子於有機溶劑中的膠體穩定性分析 47
4.2.6 無機物殘餘量之分析 47
4.3 製備ZnO/PMMA奈米複合材料 48
4.3.1 溶液摻混法 48
4.3.2 塊狀聚合法 49
4.3.3 熔融混煉法 49
4.4 ZnO/PMMA奈米複合材料之物性分析 49
4.4.1 ZnO粒子之晶格分析 50
4.4.2 熱性質分析 50
4.4.3 光學性質分析 54
4.4.4 動態機械性質分析 57
4.4.5 場發射式電子顯微鏡分析 58
4.4.6 穿透式電子顯微鏡分析 59
五、結論 61
六、參考文獻 63
1.馬振基、趙玨, “高分子複合材料”, 上冊, 第3頁至第15頁 (1995), 正中出版社, 台北市, 初版; 下冊, 第3頁至第14頁(2006), 編譯館, 台北市, 初版
2.柯揚船, “聚合物-無機奈米複合材料”, 第2頁至第35頁 (2004), 五南圖書公司, 台北市, 初版
3.高濂、孫靜、劉陽橋, “奈米粉體的分散及表面改性”, 第189頁至第303頁(2005), 五南圖書公司, 台北市, 初版
4.Kickelbick, G., Progress in Polymer Science, 28, 83-114 (2002)
5.Demir, M.; Koynov, K.; Akbey, Ü.; Bubeck, C.; Park, I.; Lieberwirth, I. and Wegner, G.; Macromolecules, 40, 1089-1100 (2007)
6.Xiong, M.; Gu, G.; You, B. and Wu, L., Journal of Applied Polymer Science, 90, 1923-1931 (2003)
7.Dange, C.; Phan, T.N.T; Andre, V.; Rieger, J.; Persello, J. and Foissy, A., Journal of Colloid and Interface Science, 315, 107-115 (2007)
8.Hong, R. Y.; Pan, T. T.; Qian, J. Z. and Li, H. Z., Chemical Engineering Journal, 119, 71-81 (2006)
9.Rosen, S. L., “Fundamental Principles Polymeric Materials”, P. 371 and P. 381 (1993), John Wiley and Sons Inc., Publicated in New York, 2nd edition
10.Hung, C. H. and Whang, W. T., Journal of Materials Chemistry, 15, 267-274 (2005)
11.Hong, R. Y.; Chen, L. L.; Li, J. H.; Li, H. Z.; Zheng, Y. and Ding, J., Polymers for Advanced Technologies, 18, 901-909 (2007)
12.Haase, M.; Weller, H. and Henglein, A., Journal of Physical Chemistry, 92, 482-487 (1988)
13.Spanhel, L. and Anderson, M. A., Journal of American Chemistry Society, 113, 2826-2833 (1991)
14.Lu, C. H. and Yeh, C. H., Material Letters, 33, 129-132 (1997)
15.Guo, L. and Yang, S., Chemical Materials, 12, 2268-2274 (2000)
16.Demir, M. M.; Muñoz-Espí, R.; Lieberwirth, I. and Wegner, G., Journal of Materials Chemistry, 16, 2940-2947 (2006)
17.Klun, U.; Zupan J. and Solmajer, T., Macromolecular Theory and Simulation, 8, 492-497 (1999)
18.Santhiya, D.; Subramanian, S.; Natarajan, K. A. and Malghan, S. G., Journal of Colloid and Interface Science, 216, 143-153 (1999)
19.Kislenko, V. N. and Verlinskaya, R. M., Journal of Colloid and Interface Science, 250, 478-483 (2002)
20.Liufu, S. C.; Xiao, H. N. and Li, Y. P., Materials Letters, 59, 3494-3497 (2005)
21.Chen, J. H.; Dai, C. A.; Chen, H. J.; Chien, P. C. and Chiu, W. Y., Journal of Colloid and Interface Science, 308, 81-92 (2007)
22.Tang, E.; Cheng, G. X.; Ma, X. L.; Pang, X. S. and Zhao, Q., Applied Surface Science, 252, 5227-5232 (2006)
23.Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Herrera, R.; Anastasiadis, S. H.; Petridis, D. and Giannelis, E. P., Small, 2, No. 4, 513 – 516 (2006)
24.Xie, J. J.; Liu, X. R. and Liang, J. F., Journal of Applied Polymer Science, 106, 1606-1613 (2007)
25.Ying, K. L.; Hsieh, T. E. and Hsieh, Y. F., Ceramics International, 35, 1165-1171 (2008)
26.Lü, C.; Gao, J. F.; Fu, Y. Q.; Du, Y. Y.; Shi, Y. L. and Su, Z. M., Advanced Functional Materials, 18, 3070-3079 (2008)
27.Liu, Y. L.; Hsu, C. Y. and Hsu, K. Y., Polymer, 46, 1851-1856 (2005)
28.Hong, R. Y.; Fu, H. P.; Zhang, Y. J.; Liu, L.; Wang, J; Li, H. Z. and Zheng, Y., Journal of Applied Polymer Science, 105, 2176-2184 (2007)
29.Shim, J. W.; Kim, J. W.; Han, S. H.; Chang, I. S.; Kim, H. K.; Kang, H. H.; Lee, O. S. and Suh, K. D., Colloids and Surfaces, 207, 105-111 (2002)
30.Tang, J. G.; Wang, Y.; Liu, H. Y.; Xia, Y. Z. and Schneider, B., Journal of Applied Polymer Science, 90, 1053-1057 (2003)
31.Khrenov, V.; Klapper, M.; Koch, M. and Müllen, K., Macromolecular Chemistry and Physics, 206, 95-101 (2005)
32.Tang, E.; Cheng, G. X. and Ma, X. L., Powder Technology, 161, 209-214 (2006)
33.Hong, R. Y.; Qian, J. Z. and Cao, J. X., Powder Technology, 163, 160-168 (2006)
34.Li, S. H.; Toprak, M. S.; Jo, Y. S.; Dobson, J.; Kim, D. K. and Muhammed, M., Advanced Materials, 19, 4347-4352 (2007)
35.Demir, M.; Castignolles, P.; Akbey, Ü. and Wegner, G., Macromolecule, 40, 4190-4198 (2007)
36.Laachachi, A.; Ruch, D.; Addiego, F.; Ferriol, M.; Cochez, M. and Cuesta, J.-M. L., Polymer Degradation and Stability, 94, 670-678 (2009)
37.Li, J. H.; Hong, R. Y.; Li, M. Y.; Li, H. Z.; Zheng, Y. and Ding, J., Progress in Organic Coatings, 64, 504-509 (2009)
38.鶴田禎二, 川上雄資 著, 薛敬和 編譯, “高分子設計” (2007), 國家圖書館, 新竹市, 第三版
39.林信賢, “聚甲基丙烯酸甲酯與蒙脫土奈米複合材料製備及物性分析”, 中興大學化學工程研究所碩士論文 (2001)
40.Skoog, D. A.; Holler, F. J. and Nieman, T. A., “Principles of Instrumental Analysis”, P. 300 (1998), Thomson Learning Inc., Publicated in Belmont, 5th edition
41.Reimer, L., “Scanning Electron Microscopy, Physics of Image Formation and Microanalysis”, P. 8 (1998), Springer, Publicated in Berlin, 2nd edition
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊