|
1. Klopman, G., L.R. Stefan, and R.D. Saiakhov, ADME evaluation. 2. A computer model for the prediction of intestinal absorption in humans. Eur J Pharm Sci, 2002. 17(4-5): p. 253-63. 2. Eddershaw, P.J., A.P. Beresford, and M.K. Bayliss, ADME/PK as part of a rational approach to drug discovery. Drug Discovery Today, 2000. 5(9): p. 409-414. 3. Selick, H.E., A.P. Beresford, and M.H. Tarbit, The emerging importance of predictive ADME simulation in drug discovery. Drug Discovery Today, 2002. 7(2): p. 109-116. 4. Fung, M., et al., Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999*. Drug Information Journal, 2001. 35(1): p. 293-317. 5. Rodrigues, A.D., Preclinical drug metabolism in the age of high-throughput screening: an industrial perspective. Pharmaceutical research, 1997. 14(11): p. 1504-1510. 6. Butina, D., M.D. Segall, and K. Frankcombe, Predicting ADME properties in silico: methods and models. Drug discovery today, 2002. 7(11): p. S83-S88. 7. Li, A.P., Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today, 2001. 6(7): p. 357-366. 8. DiMasi, J.A., Risks in new drug development: approval success rates for investigational drugs. 2001. 9. Gertrudes, J.C., et al., Machine learning techniques and drug design. Curr Med Chem, 2012. 19(25): p. 4289-97. 10. Byvatov, E., et al., Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci, 2003. 43(6): p. 1882-9. 11. Heikamp, K. and J. Bajorath, Support vector machines for drug discovery. Expert Opin Drug Discov, 2014. 9(1): p. 93-104. 12. Dougherty, J., R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous features. in Machine learning: proceedings of the twelfth international conference. 1995. 13. Zhao, Z. and H. Liu. Spectral feature selection for supervised and unsupervised learning. in Proceedings of the 24th international conference on Machine learning. 2007. ACM. 14. Li, B.K., et al., In silico prediction of spleen tyrosine kinase inhibitors using machine learning approaches and an optimized molecular descriptor subset generated by recursive feature elimination method. Comput Biol Med, 2013. 43(4): p. 395-404. 15. Yap, C.W., PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem, 2011. 32(7): p. 1466-74. 16. Halgren, T.A., Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of computational chemistry, 1996. 17(5‐6): p. 490-519. 17. Borhani, D.W. and D.E. Shaw, The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des, 2012. 26(1): p. 15-26. 18. Jiang, Y. and R.B. Cole, Oligosaccharide analysis using anion attachment in negative mode electrospray mass spectrometry. J Am Soc Mass Spectrom, 2005. 16(1): p. 60-70. 19. Barrows, S.E., et al., Relative Stability of Alternative Chair Forms and Hydroxymethyl Conformations of Beta-D-Glucopyranose. Carbohydrate Research, 1995. 276(2): p. 219-251. 20. Barrows, S.E., et al., Factors controlling, relative stability of anomers and hydroxymethyl conformers of glucopyranose. Journal of Computational Chemistry, 1998. 19(10): p. 1111-1129. 21. Lii, J.H., B.Y. Ma, and N.L. Allinger, Importance of selecting proper basis set in quantum mechanical studies of potential energy surfaces of carbohydrates. Journal of Computational Chemistry, 1999. 20(15): p. 1593-1603. 22. Tanaka, M., et al., An ONIOM Study of a Guanidinium Salt Ionic Liquid. Experimental and Computational Characterization of N,N,N '' N '' N ''-Pentabutyl-N ''-benzylguanidinium Bromide. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, 2009. 64(6): p. 765-772. 23. Caruana, R. and A. Niculescu-Mizil. An empirical comparison of supervised learning algorithms. in Proceedings of the 23rd international conference on Machine learning. 2006. ACM. 24. Bertelli, L., et al., Kernelized Structural SVM Learning for Supervised Object Segmentation. 2011 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr), 2011. 25. Chang, C.-C. and C.-J. Lin, LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2011. 2(3): p. 27. 26. Schölkopf, B., et al., Input space versus feature space in kernel-based methods. Neural Networks, IEEE Transactions on, 1999. 10(5): p. 1000-1017. 27. Pirooznia, M., et al., A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics, 2008. 9 Suppl 1: p. S13. 28. Lin, S.-l. and Z. Liu, Parameter selection in SVM with RBF kernel function. Journal-Zhejiang University of Technology, 2007. 35(2): p. 163. 29. Chang, Y.-W., et al. Low-degree polynomial mapping of data for svm. in Journal of Machine Learning Research. 2010. Citeseer. 30. Keerthi, S.S. and C.-J. Lin, Asymptotic behaviors of support vector machines with Gaussian kernel. Neural computation, 2003. 15(7): p. 1667-1689. 31. Ben-Hur, A. and J. Weston, A user’s guide to support vector machines, in Data mining techniques for the life sciences. 2010, Springer. p. 223-239. 32. Guyon, I. and A. Elisseeff, An introduction to variable and feature selection. The Journal of Machine Learning Research, 2003. 3: p. 1157-1182. 33. Hall, M.A. and L.A. Smith, Feature subset selection: A correlation based filter approach. Progress in Connectionist-Based Information Systems, Vols 1 and 2, 1998: p. 855-858. 34. Kohavi, R. and G.H. John, Wrappers for feature subset selection. Artificial Intelligence, 1997. 97(1-2): p. 273-324. 35. Hall, M.A. and L.A. Smith, Practical feature subset selection for machine learning. Proceedings of the 21st Australasian Computer Science Conference, Acsc'98, 1998. 20(1): p. 181-191. 36. Hu, X.S., G. Greenwood, and J.G. D'Ambrosio, An evolutionary approach to hardware/software partitioning, in Parallel Problem Solving from Nature—PPSN IV. 1996, Springer. p. 900-909. 37. Malhotra, R., N. Singh, and Y. Singh, Genetic algorithms: Concepts, design for optimization of process controllers. Computer and Information Science, 2011. 4(2): p. p39. 38. 林豐澤, 演化式計算上篇: 演化式演算法的三種理論模式. 39. Zacharaki, E.I., V.G. Kanas, and C. Davatzikos, Investigating machine learning techniques for MRI-based classification of brain neoplasms. International journal of computer assisted radiology and surgery, 2011. 6(6): p. 821-828. 40. Gütlein, M., et al. Large-scale attribute selection using wrappers. in Computational Intelligence and Data Mining, 2009. CIDM'09. IEEE Symposium on. 2009. IEEE. 41. Eberhart, R.C. and Y.H. Shi, Particle swarm optimization: Developments, applications and resources. Proceedings of the 2001 Congress on Evolutionary Computation, Vols 1 and 2, 2001: p. 81-86. 42. Kennedy, J. and R. Eberhart, Particle swarm optimization. 1995 Ieee International Conference on Neural Networks Proceedings, Vols 1-6, 1995: p. 1942-1948. 43. Akbari, R. and K. Ziarati, A rank based particle swarm optimization algorithm with dynamic adaptation. Journal of Computational and Applied Mathematics, 2011. 235(8): p. 2694-2714. 44. Hedar, A.-R., J. Wang, and M. Fukushima, Tabu Search for Attribute Reduction in Rough Set Theory. 2006. 45. Glover, F., Future paths for integer programming and links to artificial intelligence. Computers & operations research, 1986. 13(5): p. 533-549. 46. Hauke, J. and T. Kossowski, Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones Geographicae, 2011. 30(2): p. 87-93. 47. Mukaka, M., A guide to appropriate use of Correlation coefficient in medical research. Malawi Medical Journal, 2012. 24(3): p. 69-71. 48. Swinscow, T.D.V., Statistics at square one. 2002. 49. Lin, T.H. and T.L. Tsai, Constructing a linear QSAR for some metabolizable drugs by human or pig flavin-containing monooxygenases using some molecular features selected by a genetic algorithm trained SVM. J Theor Biol, 2014. 356: p. 85-97.
|