|
[1] R. B. et al., “The second generation VLT instrument MUSE: Science drivers and instrument design,” in Proc. SPIE, vol. 5492, Glasgow, June 2004, pp. 1145–1149. [2] MUSE. [Online]. Available: http://muse.univ-lyon1.fr. [3] A. Jarno, R. Bacon, P. Ferruit, A. P´econtal-Rousset, M. Pandey-Pommier, O. Stre¬icher, and P. Weilbacher, “Introducing atmospheric effects in the numerical simula¬tion of the VLT/MUSE instrument,” in Proc. SPIE, vol.7738,2010,pp.77380A– 1–11. [4] D. Serre, E. Villeneuve, H. Carfantan, L. Jolissaint, V. Mazet, S. Bourguignon, and A. Jarno, “Modeling the spatial PSF at the VLT focal plane for MUSE WFM data analysis purpose,” in Proc. SPIE, vol. 7736, 2010. [5] J. Kosmalski, L. Par´es, W. Seifert, W. Xu, J.-C. Olaya, and B. Delabre, “Optical design of the VLT/MUSE instrument,” in Proc. SPIE, vol.8167,2011,pp.816716–1-15. [6] S. Bourguignon, D. Mary, and E. Slezak, “Sparsity-based denoising of hyperspectral astrophysical data with colored noise: Application to the MUSE instrument,” in Proc. IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing(WHISPERS), Reykjavik, Lceland, June 14-16 2010. [7] ——, “Restoration of astrophsical spectra with sparsity constraints: Models and algorithms,” IEEE Journal of Selected Topics in Signal Processing,vol.5, no.5,pp. 1002–1013, Sept. 2011. [8] ——, “Processing MUSE hyperspectral data: Denoising, deconvolution and detec¬tion of astrophysical sources,” Statistical Methodology, vol. 9, pp. 32–43, 2012. [9] S. Bourguignon, H. Carfantan, E. Slezak, and D. Mary, “Sparsity-based spatial-spectral restorationofMUSE astrophysicalhyperspectraldatacubes,” in Proc.IEEE Workshop onHyperspectralImage andSignalProcessing: EvolutioninRemoteSens-ing(WHISPERS), Lisbon, Portugal, June 6-9 2011. [10] I. Meganem, Y. Deville, S. Hosseini, H. Carfantan, and M. S. Karoui, “Extraction of stellar spectra from dense fields in hyperspectral MUSE data cubes using non-negativematrixfactorization,” in Proc.IEEEWorkshop onHyperspectralImage and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, June 6-9 2011. [11] F. Soulez, S. Bongard, E. Thi´ebaut, and R. Bacon, “Restoration of hyperspectral astronomical data from integral field spectrograph,” in Proc. IEEE Workshop on HyperspectralImage andSignalProcessing:EvolutioninRemoteSensing(WHIS¬PERS), Lisbon, Portugal, June 6-9 2011. [12] T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, “A simplex volume max¬imization framework for hyperspectral endmember extraction,” IEEE Trans. Geo¬science and Remote Sensing, vol. 49, no. 11, pp. 4177–4193, Nov. 2011. [13] S.Boyd andL.Vandenberghe, Convex Optimization. CambridgeUniv.Press,2004. [14] J.F.Sturm,“UsingSeDuMi1.02,MATLABtoolboxforoptimizationoversymmetric cones,” Optimiz. Methods Softw., vol.11-12,pp.625–653,1999. [15] M.GrantandS.Boyd., “CVX:Matlab softwarefordisciplined convexprogramming, version 1.21,” Oct. 2010, available: http://cvxr.com/cvx. [16] P. Tichavsk´y and Z. Koldovsk´y, “Optimal pairing of signal components separated by blind techniques,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 119–122, Feb. 2004. [17] H. W. Kuhn, “The Hungarian method for the assignment method,” Naval Research LogisticsQuarterly, vol. 2, pp. 83–97, 1955. [18] R. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Processing Maga¬zine, vol. 24, no. 4, pp. 118–121, July 2007.
|