跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳紅祝
研究生(外文):Tran Thi Hong Chuc
論文名稱:酸萃取和水解吳郭魚皮膠原蛋白對胺基酸組成及分子量分布之影響
論文名稱(外文):Effects of Acid Extraction and Hydrolysis on Amino Acid Composition and Molecular Weight Distribution of Oreochromis aurea Skin Collagen
指導教授:孫寶年孫寶年引用關係
指導教授(外文):Bonnie Sun Pan
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:53
中文關鍵詞:吳郭魚膠原蛋白分子量
外文關鍵詞:Oreochromis aureaCollagenMolecular Weight
相關次數:
  • 被引用被引用:0
  • 點閱點閱:727
  • 評分評分:
  • 下載下載:142
  • 收藏至我的研究室書目清單書目收藏:1
吳郭魚 (Oreochromis aurea) 皮的一般成分組成水分、粗蛋白、粗脂肪及灰分,分別為 33.38%、32.23%、4.21% 及 0.21%。吳郭魚皮以 0.5 M 醋酸分別在室溫 (20 ± 2℃) 及 50℃ 萃取 2-8 小時,可萃取出酸可溶膠原蛋白 (acid - soluble collagen, ASC)。室溫萃取所得 ASC (ASC-RT) 及 50℃萃取所得之 ASC (ASC-50℃) 之黏度及固型物含量 (Brix) 隨萃取時間的增加而上升,ASC-50℃ 之 Brix 由 3.4 升至 3.6 %,ASC-RT 由 3.0 升至 3.2%。吳郭魚皮以室溫萃取 6 小時可得最大黏度達 777.67 cP,若於 50℃ 萃取 2 小時至 8 小時,黏度由 12.98 cP 些微降至 10.00 cP。吳郭魚在室溫萃取2 小時至 8 小時,所得之 ASC 乾重產率由 19.28 % 增至 28.71%,經二次重複萃取產率可增至 30%;若以 50 ℃ 萃取 2 至 8 小時,產率則無顯著差異 (P>0.05)。ASC-RT 之分子量分布由 105 kD 至 295 kD;ASC-50℃ 之分子量分布為 71 kD 至 244 kD。ASC-RT 最大分子量為 295 kD,濃度隨著萃取時間的增加,由 1.67 降至 1.54 mg/ ml albumin;ASC-50℃ 最大之分子量為 244 kD,隨著萃取時間 2 小時增加至 8 小時,濃度由 2.12 降至 1.53,相反的,分子量為 71 kD 之蛋白當萃取時間 由 2 小時增加至 8 小時,濃度由 1.45 增至 1.56。本研究之 ASC 分子量皆高於市售產品 (MW ≦50 kD) 及魚鱗膠原胜肽 (1.3 - 4.5 kD),以膠原蛋白酶水解膠原蛋白,可得較小之分子量產物,約為 35 kD 及小於 20 kD。吳郭魚皮萃取 2 小時所得 ASC-RT 較 ASC-50℃ 含較多羥脯氨酸及羥離胺酸,故 ASC-RT 結構可能較 ASC-50℃ 穩定,因此 ASC-RT 的分子量高於ASC-50℃。ASC-RT 及 ASC-50℃ 凍結乾燥後以顯微鏡觀察,兩者結構皆有膠原蛋白纖維存在,以 ASC-50℃ 之結構較 ASC-RT 更纖細且較少孔洞。
The proximate composition of Oreochromis niloticus skin was analyzed. The contents of moisture, crude protein, lipid and ash of tilapia skin were 33.38%, 32.23%, 4.21% and 0.21%, respectively. Tilapia skin collagen was extracted with 0.5 M acetic acid at room temperature (20 ± 2℃) and 50℃ for 2 to 8 h to obtain acid - soluble collagen (ASC). The viscosity and Brix of room-tempeature extracted and 50℃-extracted ASC increased with extraction time. ASC hydrolyzed at room temperature had lower Brix than that at 50℃. Brix for ASC extracted at 50℃ (ASC-50℃) was from 3.4 to 3.6% and ASC extracted at room temperature (ASC-RT) was from 3.0 to 3.2% Brix. The viscosity of ASC solution was maximal at 777.67 cP after 6 h of extraction at room temperature. Conversely, the viscosity of collagen solution extracted for 2 h to 8 h from tilapia skin at 50℃ decreased slightly from 12.98 cP to 10.00 cP. The yield of acid-soluble collagen extracted at room temperature from 2 to 8 h increased from 19.28 % to 28.71% (on dry weight basis), respectively. The yield increased to about 30% after re-extraction. Differences in the yields of extraction at 50℃ from 2 to 8 h were insignificant (P>0.05). The molecular weight of ASC-RT ranged 105 kD to 295 kD, while that extracted at 50℃ had molecular distribution from 71 kD to 244 kD. The largest molecular weight band (295 kD) of ASC-RT decreased in concentration (mg/ ml albumin) from 1.67 to 1.54 mg/ ml. Similarly, concentration of ASC-50℃ of the largest molecular weight band (244 kD) decreased from 2.12 mg/ ml for 2 h and 1.53 mg/ ml for 8 h while the concentration of 71 kD showed an increased trend, enhancing from 1.45 to 1.56 mg/ml for 2 h and 8 h, respectively. The molecular weight (MW) of ASC in present research is much higher than those in commercial products and fish-scale collagen peptides, MW ≤ 50 kD for commercial products and 1.3 - 4.5 kD for fish-scale collagen peptides. Collagen hydrolyzed by collagenase had low molecular weight about 35 kD and less than 20 kD. ASC-RT of 2 h extraction might be more stable in structure than ASC-50℃due to higher hydroxyproline and hydroxylysine content in ASC-RT. Therefore, the molecular weight of ASC-RT was higher than that of ASC-50℃. Microscopic images of ASC-RT and ASC-50℃ were taken to compare differences in ASC microstructure. It seemed that microstructure of freeze-dried ASC-50℃ was fine and less porous than that of ASC-RT. There were presence of collagen fibers with thin strands and collagen sheets in both freeze-dried ASC-RT and ASC- 50℃.
TABLE OF CONTENTS i
ACKNOWLEDGEMENT iv
ABSTRACT v
LIST OF TABLES vii
LIST OF FIGURES viii
1. INTRODUCTION 1
2. LITERATURE REVIEW 3
2.1. Composition and structure of collagen 3
2.2. Fish collagen types 4
2.3. Thermal denaturation temperature of fish collagen 6
2.4. Differences between fish and mammalian collagen 7
2.5. Differences of collagen, gelatin and collagen hydrolysate 8
3. EXPERIMENTAL DESIGN 9
4. MATERIALS AND METHODS 11
4.1. Materials 11
4.1.1 Preparation of fish skin 11
4.1.2 Preparation of acid-soluble collagen 11
4.2. Methods 12
4.2.1 Proximate compositions of tilapia skin 12
4.2.2 Determination of viscosity and Brix of collagen solution 15
4.2.3 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 15
4.2.4 Molecular weight and concentration determination of commercial products 16
4.2.5 Collagenase hydrolysis of the acid soluble collagen 17
4.2.6 Amino acid analysis 18
4.2.7 Microscopic examination 18
4.2.8 Statistical analysis 19
5. RESULTS AND DISCUSSION 20
5.1. Differences in proximate composition of Taiwan tilapia skin from other fish skin 20
5.2. Physical properties of acid-soluble collagen solution 21
5.2.1. Viscosity and Brix of extracting solution 21
5.2.2. Yields of acid-soluble collagen 24
5.3. Molecular weight distribution of the acid-soluble collagen (ASC) affected by hydrolysis time 27
5.3.1. Electrophoretic pattern of acid-soluble collagen extracted from tilapia skin using different concentration of separating gel. 27
5.3.2. Molecular weight distribution of acid-soluble collagen (ASC) extracted at room temperature and 50 ℃ 29
5.3.3. The molecular weight range of commercial products 33
5.4. Reduction of low molecular weight ASC by collagenase hydrolysis 37
5.5. Hydroxyproline and proline content of acid-soluble collagen 40
5.6. Microstructure of lyophilized acid-soluble collagen 43
6. CONCLUSIONS 46
REFERENCES 47

Abimbola, A.O., Kolade, O.Y., Ibrahim, A.O., Oramadike, C.E., and Ozor, P.A. 2010. Proximate and anatomical weight composition of wild brackish tilapia guineensis and tilapia melanotheron. Journal of Food Safety, 12 : 100-103.
AOAC. 1998. Official methods of analysis of association of official analytical chemists international. Gaithersburg, USA.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 : 248-254.
Chai , H.J., Li, J.H., Huang, H.N., Li, T.L., Chan, Y.L., Shiau, C.Y., and Wu, C.J. 2010. Effects of sizes and conformations of fish-scale collagen peptides on facial skin qualities and transdermal penetration efficiency. Journal of Biomedicine and Biotechnology, ID 757301, 9pp
Cheow, C.S., Norizah, M.S., Kyaw, Z.Y., and Howell, N.K. 2007. Preparation and characterisation of gelatins from the skins of sin croaker (Johnius dussumieri) and shortfin scad (Decapterus macrosoma). Food Chemistry, 101 : 386-391.
Duan, R., Zhang, J., Dua, X., Yao. X., and Konno, K. 2009. Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chemistry, 112 : 702-706.
Eastoe, J.E., and Eastoe, B. 1952. A method for the determination of total nitrogen in proteins. In the British gelatine and glue research association research report, series B 5, pp 1-17.
Gelse, K., Poschl, E., and Aigner, T. 2003. Collagens - structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55 : 1531-1546.
Gimenez, B., Aleman, A., Montero, P., and Gomez-Guillen, M.C. 2009. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry, 114 : 976-983.
Gudmundsson, M. 2002. Rheological properties of fish gelatins. Journal of Food Science, 67 : 2172-2176.
Karim, A.A., and Bhat, R. 2009. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, 23 : 563-576.
Kelleher, K. 2005. Discards in the world's marine fisheries. An update. FAO Fisheries Technical Paper. No. 470. ISSN 10429-9345.
Kim, S.K., and Mendis, E. 2006. Bioactive compounds from marine processing byproducts – A review. Food Research International, 39 : 383-393.
Kimura, S., Zhu, X.P., Matsui, R., Shijoh, M., and Takamizawa, S. 1988. Characterization of fish muscle type I collagen. Journal of Food Science, 53 : 1315-1318.
Kimura, S., Ohno, Y., Miyauchi, Y., and Uchina, N. 1987. Fish skin type I collagen: wide distribution of a α3 subunit in teleost. Biochemistry and Physiology, 88 : 27-34.
Kimura, S., Miyauchi, Y., and Uchia, N. 1991. Scale and bone type I collagens of carp (cyprinus carpio). Biochemistry and Physiology, 99 : 473-476.
Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Nagai, T., and Tanaka, M. 2005. Chacracterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry, 89 : 363-372
Kludas, M., and Borchert, G. 1976. Agent for the care of skin. United States Patent No. 3, 991, 184
Komsa-Penkova , R., Koynova, R., Kostov, G., and Tenchov, B. 1999. Discrete reduction of type I collagen thermal stability upon oxidation. Biophysical Chemistry, 83 : 185-195
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227 : 680-685.
Lee, C.H., Singla, A., and Lee, Y. 2001. Biomedical applications of collagen. International Journal of Pharmaceutics, 221 : 1-22.
Montero, P., Borderias, J., Turnay, J., and Leyzarbe, M.A. 1990. Characterization of hake (Merluccius merluccius L.) and trout (Salmo irideus Gibb) collagen. Jounal of Agriculture and Food Chemistry, 38 : 604-609.
Muyonga, J.H., Cole, C.G.B., and Duodu, K.G. 2004a. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, 85 : 81-89
Muyonga, J.H., Cole, C.G.B., and Duodu, K.G. 2004b. Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids, 18 : 581- 592.
Nagai, T., and Suzuki, N. 2000. Isolation of collagen from fish waste material- skin, bone and fins. Food Chemistry, 68 : 277-281.
Nagai, T., Araki, Y., and Suzuki, N. 2002. Collagen of the skin of ocellate puffer fish (Takifugu rubripes). Food Chemistry, 78 : 173-177.
Ogawa, M., Moody, M.W., Portier, R.J., Bell. J., Schexnayder, M.A., and Losso, J.N. 2003. Biochemical properties of black drum and sheepshead seabream skin collagen. Journal of Agriculture and Food Chemistry, 51 : 8088-8092.
Ogawa, M., Portier, R.J., Moody, M.W., Bell, J., Schexnayder, M.A. and Losso, J.N. 2004. Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonis cromis) and sheepshead seabream (Archosargus probatocephalus). Food Chemistry, 88 : 495-501.
Potaros, Tr., Raksakulthai, N., Runglerdkreangkrai, J., and Worawattanamateekul, W. 2009. Characteristics of collagen from Nile tilapia (Oreochromis niloticus) skin isolated by two different methods. Kasetsart Journal (Natural Science), 43 : 584-593.
Rest, M.V.D., and Garrone, R. 1991. Collagen family of proteins. Federation of American Societies for Experimental Biology Journal, 5 : 2814-2823.
Rha, C. 1975. Theory, determination and control of physical properties of food material. Cambridge , USA. pp 21-24
Sadowska, M., Kolodziejska, I., and Niecikowska, C. 2003. Isolation of collagen from the skins of Baltic cod (Gadus morhua). Food Chemistry, 81: 257-262.
Sato, K., Ando, M., Kubota, S., Origasa, K., Kawase, H., Toyohara H., Sakaguchi, M., Nakagawa, T., Makinodan, Y., Ohtsuki, K., and Kawabata, M. 1997. Involvement of type V collagen in softening of fish muscle during short-term chilled storage. Journal of Agricultural and Food Chemistry, 45 : 343-348.
Sato, K., Ohashi, C., Ohtsuki, K., and Kawabata, M. 1991. Type V collagen in trout (Salmo gairdnerl) muscle and its solubility change during chilled storage of muscle. Journal of Agricultural and Food Chemistry, 39 : 1222-1225.
Sato, K., Sakaguchi, M., and Bremner, H. A. (1999). Extracellularmatrix of fish and shellfish.
See, S.F., Hong, P.K., Ng, K.L., Wan Aida, W.M., and Babji, A.S. 2010. Physicochemical properties of gelatins extracted from skins of different freshwater fish species. International Food Research Journal, 17 : 809-816.
Senaratne, L.S., Park, P.J., and Kim, S.K. 2006. Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresource Technology, 97 : 191-197
Shoulders, M.D., and Raines, R.T. 2009. Collagen structure and stability. Annual Reviews of Biochemistry, 78 : 929-958
Songchotikunpan, P., Tattiyakul, J., and Supaphol, P. 2008. Extraction and electrospinning of gelatin from fish skin. International Journal of Biological Macromolecules, 42 : 247-255.
Swatschek, D., Schatton, W., Kellermann, J., Muller, W.E.G., and Kreuter, J. 2002. Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. European Journal of Pharmaceutics and Biopharmaceutics, 53 : 107-113.
Takada, Y., Aoe, S., Kato, K., Toba, Y., and Yamamura, J. 2002. Medicine, drink, food and feed having an action of strengthening bone. United States Patent No.6, 344, 437.
Takemori, T., Yasuda, H., Mitsui, M., and Shimizu, H. 2007. Collagen-containing food and drink. United States Publication No. 2007/ 0009638 A1.
Yan, M., Li, B., Zhao, X., Ren, G., Zhuang, Y., Hou, H., Zhang, X., Chen, L., and Fan, Y. 2008. Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma). Food Chemistry, 107 : 1581-1586.
Yang, H., Wang, Y., Zhou, P., and Regenstein, J.M. 2008. Effects of alkaline and acid pretreatment on the physical properties and nanostructures of the gelatin from channel catfish skins. Food Hydrocolloids, 22 : 1541-1550.
Yata, M., Yoshida, C., Fujisawa, S., Mizuta, S., and Yoshinaka, R. 2001. Identification and characterization of molecular species of collagen in fish skin. Food Chemistry and Toxicology, 66 : 247- 251.
Yoshimura, K., Terashima, M., Hozan, D., Ebato, T., Nomura, Y., Ishii, Y., and Shirai, K. 2000. Physical properties of shark gelatin compared with pig gelatin. Journal of Agriculture and Food Chemistry, 48 : 2023-2027.
Zeng, S.K., Zhang, C.H., Lin, H., Yang, P., Hong, P.Z., and Jiang, Z. 2009. Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia (Oreochromis niloticus ). Food Chemistry, 116 : 879-883.
Zhang, M., Chen, Y., Li, G., and Du, Z. 2010. Rheological properties of fish skin collagen solution: Effects of temperature and concentration. Korea-Australia Rheology Journal, 22 : 119-127
Zhang, Z., Li, G., and Shi, B. 2006. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. Journal of the Society of Leather Technologists and Chemists, 90: 23-28.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top