跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 13:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇煜翔
研究生(外文):Yu-Siang Su
論文名稱:DDX3和HSC70作為EV71感染情況下IRES轉譯作用之細胞因子的特性探討
論文名稱(外文):Characterization of DDX3 and HSC70 as the host factors for IRES-dependent translation under EV71 infected condition
指導教授:黃麗華黃麗華引用關係
指導教授(外文):Lih-Hwa Hwang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:腸病毒71型IRES轉譯因子
外文關鍵詞:DDX3HSC70
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
腸病毒71型 (EV71) 是微小RNA病毒科(Picornaviridae)腸病毒屬(Enterovirus genus)的成員。若感染者是5歲以下的幼童,病毒有機會侵犯中樞神經系統,甚至造成死亡。EV71在亞太地區常有週期性的流行發生,目前仍沒有有效的抗病毒藥物或是疫苗上市。因此,EV71被視為新興的具神經向性(neurotropism)的病毒,屬於重要的公衛議題之一。為了尋找EV71新穎的參與在IRES轉譯作用的細胞因子,以做為抗病毒藥物標的。我們使用了EV71 IRES RNA做為探針,在試管內結合反應後,將與其交互作用的蛋白質複合體抓取下來,並以蛋白質體學的方式分析其組成,發現50個在感染情況下會與IRES RNA有交互作用的細胞因子。更進一步使用慢病毒攜帶shRNA的方式分別敲落這50個細胞因子,以IRES報導基因觀察這些細胞因子對於EV71轉譯活性的影響。我們發現大部分的細胞因子對於EV71 IRES轉譯活性都有程度不同的影響。更進一步分析這些細胞因子對於病毒蛋白表現的影響,結果雷同於報導基因的分析。現今有許多的報導指出熱休克蛋白(heat shock protein) 參與在許多病毒的生活史當中,從我們的實驗中也得知HSC70在EV71生活史中扮演正向調控者的角色。在未來我們想針對HSC70做更進一步的研究及探討。此外,在實驗室早期研究中得知RNA解螺旋酶DDX3透過其RNA解螺旋酶活性,解開IRES SL-VI二級結構,以提升病毒轉譯作用的效率,然而在試管內RNA競爭實驗中,我們發現DDX3對於IRES RNA的結合是沒有序列專一性的。利用RNA-蛋白質抓取以及免疫共沉澱法,我們認為DDX3可能是透過與截短的eIF4G*交互作用,而被帶到正確的位置上。另外,抗癌藥物Sorafenib被報導能削弱EV71的轉譯,我們推測它可能是透過調節DDX3蛋白的解螺旋酶活性,進而影響EV71的基因表現,在未來我們也會以純化DDX3蛋白來了解Sorafnib是否會影響DDX3的解螺旋酶活性。綜合上述結果,本論文除了篩選出新穎的病毒感染相關細胞因子,也對DDX3在EV71轉譯機制有更進一步的了解。
Enterovirus 71 (EV71) is a member of Enterovirus genus within Picornaviridae family. EV71 infection may cause severe neurological complications and even death in young patients, especially those who are under 5 years old. Several countries across the Asia-Pacific region experienced cyclic epidemics occurring every 2-3 years. There is no FDA approved antiviral therapy or vaccine to date. As a result, EV71 is regarded as an emerging neurotropic virus, and becomes a major issue of public health. In order to find out the potential antiviral targets, we are devoted to screening cellular factors that are associated with internal ribosome entry site (IRES)-mediated translation under EV71 infected condition. We conducted an in vitro RNA-protein binding assay, followed by proteomic analysis, and found that 50 cellular proteins may interact with IRES RNA under EV71 infection condition. Then we used shRNA-expressing lentivirus knockdown strategy to validate the importance of these 50 factors in viral protein translation. The results showed that most of these factors played positive roles in EV71 life cycle. We will choose HSC70 as a candidate for further investigation in the future. In addition, previous studies have shown that the RNA helicase DDX3 facilitats EV71 translation via its helicase activity to unwind IRES Stem-loop (SL)-VI. However, according to the in vitro RNA binding assay, DDX3 does not have sequence specificity for binding RNA. Using a co-immunoprecipitation experiment, we demonstrated that DDX3 may bind the SL-VI of IRES in vivo via its interaction with truncated eIF4G which binds to SL-V. Additionally, sorafenib, an anti-cancer drug, was shown to be able to inhibit EV71 IRES activity. Because its structure is similar to that of compound 6, a putative DDX3 inhibitor, we hypothesize that sorafenib may suppress EV71 via inhibiting DDX3 helicase activity, which remains to be investigated in the future. In conclusion, our study has identified several new factors that may be associated with EV71 IRES activity, and provide new insight into the role of DDX3 in EV71 translation.
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖表目錄 v
附圖表目錄 vi
第一章 緒論 1
第一節、腸病毒71型 (Enterovirus 71, EV71) 1
第二節、 腸病毒71型轉譯作用及相關細胞因子 (EV71 IRES-mediated translation and related cellular factors) 6
第三節、 DEAD-box Polypeptide 3 (DDX3) 8
第四節、 熱休克蛋白(Heat shock protein, HSP) 10
第五節、 前人研究與實驗目的 13
第二章 實驗材料與方法 15
第一節、 實驗材料 (Materials) 15
第二節、 實驗方法 (Methods) 23
第三章 實驗結果 32
第一節、 尋找在感染情況下與腸病毒71型IRES有交互作用之細胞蛋白 32
第二節、 熱休克蛋白70正向調控腸病毒71型生活史 35
第三節、 RNA解螺旋酶DDX3結合在腸病毒71型IRES上的專一性探討 37
第四節、 抗癌藥物Sorafenib抑制腸病毒71型的機轉之探討 40
第四章 討論 42
參考資料 49
圖表 59
附圖 69
附表 75

圖表目錄
圖一、測量IRES驅動之螢火蟲冷光酵素活性探討50個基因對於腸病毒71型轉譯作用之重要性。 60
圖二、 探討敲落20個感染相關的結合細胞因子對於腸病毒71型病毒蛋白的表現 62
圖三、 探討HSC70在腸病毒71型生活史中是否為正向調控者。 63
圖四、利用試管內RNA競爭實驗探討DDX3與IRES RNA結合是否有序列專一性 65
圖五、免疫共沉澱法探討DDX3與eIF4G*之交互作用 66
圖六、 Sorafenib對於腸病毒71型的影響 68


附圖表目錄
附圖一、 前人研究發現當病毒感染時,會顯著增加腸病毒71型IRES轉譯作用之活性 (本實驗由何岳峰完成) 69
附圖二、 尋找感染情況下才會與腸病毒71型IRES有交互作用之細胞因子(本實驗由黃馨儀完成) 70
附圖三、 DDX3對於腸病毒71型IRES 序列專一性的探討 71
附圖四、腸病毒71型之第一型IRES轉譯機制示意圖 72
附圖五、腸病毒71型IRES SL-VI 二級結構遭受破壞後,DDX3對於IRES轉譯作用便不再重要 (本實驗由何岳峰進行SL-VI結構破壞並由蔡艾璇進行轉譯作用活性的測試) 73
附圖六、基因本體分析 (Gene Ontology)分析50個腸病毒感染相關結合因子 (由林立峰學長協助完成) 74

附表一、 50個與腸病毒71型感染相關之細胞結合因子。 75
1. T. Solomon et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. The Lancet. Infectious diseases 10, 778-790 (2010).
2. A. V. Paul et al., Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol 77, 891-904 (2003).
3. J. Y. Lin et al., Viral and host proteins involved in picornavirus life cycle. Journal of biomedical science 16, 103 (2009).
4. N. M. Kuyumcu-Martinez, M. E. Van Eden, P. Younan, R. E. Lloyd, Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Molecular and cellular biology 24, 1779-1790 (2004).
5. B. Wang et al., Enterovirus 71 Protease 2Apro Targets MAVS to Inhibit Anti-Viral Type I Interferon Responses. PLOS Pathogens 9, e1003231 (2013).
6. R. Sharma, S. Raychaudhuri, A. Dasgupta, Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320, 195-205 (2004).
7. S. P. Amineva, A. G. Aminev, A. C. Palmenberg, J. E. Gern, Rhinovirus 3C protease precursors 3CD and 3CD′ localize to the nuclei of infected cells. Journal of General Virology 85, 2969-2979 (2004).
8. M. E. Clark, P. M. Lieberman, A. J. Berk, A. Dasgupta, Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Molecular and cellular biology 13, 1232-1237 (1993).
9. P. Yalamanchili, U. Datta, A. Dasgupta, Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. Journal of Virology 71, 1220-1226 (1997).
10. K.-F. Weng, M.-L. Li, C.-T. Hung, S.-R. Shih, Enterovirus 71 3C Protease Cleaves a Novel Target CstF-64 and Inhibits Cellular Polyadenylation. PLOS Pathogens 5, e1000593 (2009).
11. F. J. M. van Kuppeveld et al., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. The EMBO Journal 16, 3519 (1997).
12. R. Aldabe, A. Barco, L. Carrasco, Membrane Permeabilization by Poliovirus Proteins 2B and 2BC. Journal of Biological Chemistry 271, 23134-23137 (1996).
13. J. R. Doedens, K. Kirkegaard, Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. The EMBO Journal 14, 894-907 (1995).
14. A. S. de Jong et al., Functional Analysis of Picornavirus 2B Proteins: Effects on Calcium Homeostasis and Intracellular Protein Trafficking. Journal of Virology 82, 3782-3790 (2008).
15. H. Xia et al., Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLOS Pathogens 11, e1005067 (2015).
16. R. Banerjee, A. Dasgupta, Interaction of picornavirus 2C polypeptide with the viral negative-strand RNA. The Journal of general virology 82, 2621-2627 (2001).
17. R. Banerjee, A. Echeverri, A. Dasgupta, Poliovirus-encoded 2C polypeptide specifically binds to the 3'-terminal sequences of viral negative-strand RNA. Journal of Virology 71, 9570-9578 (1997).
18. H. Du et al., Enterovirus 71 2C Protein Inhibits NF-kappaB Activation by Binding to RelA(p65). Scientific reports 5, 14302 (2015).
19. Z. Zheng et al., Enterovirus 71 2C Protein Inhibits TNF-α–Mediated Activation of NF-κB by Suppressing IκB Kinase β Phosphorylation. The Journal of Immunology 187, 2202 (2011).
20. K. Fujita et al., Membrane Topography of the Hydrophobic Anchor Sequence of Poliovirus 3A and 3AB Proteins and the Functional Effect of 3A/3AB Membrane Association upon RNA Replication. Biochemistry 46, 5185-5199 (2007).
21. J. S. Towner, T. V. Ho, B. L. Semler, Determinants of Membrane Association for Poliovirus Protein 3AB. Journal of Biological Chemistry 271, 26810-26818 (1996).
22. W. Xiang, K. S. Harris, L. Alexander, E. Wimmer, Interaction between the 5'-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. Journal of Virology 69, 3658-3667 (1995).
23. S. J. Plotch, O. Palant, Poliovirus protein 3AB forms a complex with and stimulates the activity of the viral RNA polymerase, 3Dpol. Journal of Virology 69, 7169-7179 (1995).
24. J. Jore, B. De Geus, R. J. Jackson, P. H. Pouwels, B. E. Enger-Valk, Poliovirus Protein 3CD Is the Active Protease for Processing of the Precursor Protein P1 in vitro. Journal of General Virology 69, 1627-1636 (1988).
25. M. F. Ypma-Wong, P. G. Dewalt, V. H. Johnson, J. G. Lamb, B. L. Semler, Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166, 265-270 (1988).
26. E.-J. Yi, Y.-J. Shin, J.-H. Kim, T.-G. Kim, S.-Y. Chang, Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res 6, 4-14 (2017).
27. M. G. Rossmann et al., Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145-153 (1985).
28. P.-N. Huang, S.-R. Shih, Update on enterovirus 71 infection. Current Opinion in Virology 5, 98-104 (2014).
29. P.-Y. Su et al., Cell Surface Nucleolin Facilitates Enterovirus 71 Binding and Infection. Journal of Virology 89, 4527-4538 (2015).
30. Y.-W. Lin et al., Human SCARB2-Mediated Entry and Endocytosis of EV71. PLOS ONE 7, e30507 (2012).
31. J. L. Whitton, C. T. Cornell, R. Feuer, Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Micro 3, 765-776 (2005).
32. S. Curry et al., Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. Journal of Virology 71, 9743-9752 (1997).
33. N. J. Schmidt, E. H. Lennette, H. H. Ho, An apparently new enterovirus isolated from patients with disease of the central nervous system. The Journal of infectious diseases 129, 304-309 (1974).
34. M. L. Kennett et al., Enterovirus type 71 infection in Melbourne. Bulletin of the World Health Organization 51, 609-615 (1974).
35. J. Blomberg et al., New Eenterovirus Type Associated With Epidemic of Aspetic Meningitis and/or Hand, Foot, and Mouth Disease. The Lancet 304, 112 (1974).
36. A. Hagiwara, I. Tagaya, T. Yoneyama, Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology 9, 60-63 (1978).
37. F. Gobara, A. Itagaki, Y. Ito, K. Saito, T. Katsumoto, Properties of virus isolated from an epidemic of hand-foot-and-mouth disease in 1973 in the city of Matsue. Comparison with Coxsackievirus group A type 16 prototype. Microbiology and immunology 21, 207-217 (1977).
38. Y. Ishimaru, S. Nakano, K. Yamaoka, S. Takami, Outbreaks of hand, foot, and mouth disease by enterovirus 71. High incidence of complication disorders of central nervous system. Archives of disease in childhood 55, 583-588 (1980).
39. M. Ho et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. The New England journal of medicine 341, 929-935 (1999).
40. P. C. McMinn, An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiology Reviews 26, 91-107 (2002).
41. Y. Wang et al., Enterovirus 71 infection in children with hand, foot, and mouth disease in Shanghai, China: epidemiology, clinical feature and diagnosis. Virology journal 12, 83 (2015).
42. C.-S. Chen et al., Retrograde Axonal Transport: a Major Transmission Route of Enterovirus 71 in Mice. Journal of Virology 81, 8996-9003 (2007).
43. G. Lozano, E. Martínez-Salas, Structural insights into viral IRES-dependent translation mechanisms. Current Opinion in Virology 12, 113-120 (2015).
44. T. R. Sweeney, I. S. Abaeva, T. V. Pestova, C. U. T. Hellen, The mechanism of translation initiation on Type 1 picornavirus IRESs. The EMBO Journal 33, 76 (2013).
45. A. V. Pisarev et al., Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol 78, 4487-4497 (2004).
46. T. R. Sweeney, V. Dhote, Y. Yu, C. U. T. Hellen, A Distinct Class of Internal Ribosomal Entry Site in Members of the Kobuvirus and Proposed Salivirus and Paraturdivirus Genera of the Picornaviridae. Journal of Virology 86, 1468-1486 (2012).
47. E. Martínez-Salas, R. Francisco-Velilla, J. Fernandez-Chamorro, G. Lozano, R. Diaz-Toledano, Picornavirus IRES elements: RNA structure and host protein interactions. Virus Research 206, 62-73 (2015).
48. D. E. Andreev et al., Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA. RNA 13, 1366-1374 (2007).
49. S. de Breyne, Y. Yu, A. Unbehaun, T. V. Pestova, C. U. Hellen, Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proceedings of the National Academy of Sciences of the United States of America 106, 9197-9202 (2009).
50. V. G. Kolupaeva, S. d. Breyne, T. V. Pestova, C. U. T. Hellen, In Vitro Reconstitution and Biochemical Characterization of Translation Initiation by Internal Ribosomal Entry. Methods in Enzymology 430, 409-439 (2007).
51. K. Meerovitch et al., La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67, 3798-3807 (1993).
52. C. U. Hellen, T. V. Pestova, M. Litterst, E. Wimmer, The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5' nontranslated region. J Virol 68, 941-950 (1994).
53. P. Sean, J. H. Nguyen, B. L. Semler, Altered interactions between stem-loop IV within the 5' noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity. Virology 389, 45-58 (2009).
54. L. B. Blyn, J. S. Towner, B. L. Semler, E. Ehrenfeld, Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol 71, 6243-6246 (1997).
55. A. V. Gamarnik, R. Andino, Two functional complexes formed by KH domain containing proteins with the 5' noncoding region of poliovirus RNA. Rna 3, 882-892 (1997).
56. S. L. Hunt, J. J. Hsuan, N. Totty, R. J. Jackson, unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes & development 13, 437-448 (1999).
57. J. Y. Lin et al., Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5' untranslated region and participates in virus replication. The Journal of general virology 89, 2540-2549 (2008).
58. J.-Y. Lin et al., hnRNP A1 Interacts with the 5′ Untranslated Regions of Enterovirus 71 and Sindbis Virus RNA and Is Required for Viral Replication. Journal of Virology 83, 6106-6114 (2009).
59. L. He et al., Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. The EMBO Journal 19, 1034-1044 (2000).
60. P. N. Huang et al., Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic acids research 39, 9633-9648 (2011).
61. J. Y. Lin, M. L. Li, S. R. Shih, Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic acids research 37, 47-59 (2009).
62. L.-L. Chen et al., Enterovirus 71 Infection Cleaves a Negative Regulator for Viral Internal Ribosomal Entry Site-Driven Translation. Journal of Virology 87, 3828-3838 (2013).
63. C.-T. Hung et al., Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLOS Pathogens 12, e1005959 (2016).
64. H. Zhang, L. Song, H. Cong, P. Tien, Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation. Journal of Virology 89, 10031-10043 (2015).
65. J.-Y. Lin, G. Brewer, M.-L. Li, HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication. PLOS ONE 10, e0140291 (2015).
66. W. Y. Tarn, T. H. Chang, The current understanding of Ded1p/DDX3 homologs from yeast to human. RNA biology 6, 17-20 (2009).
67. Q. Yang, E. Jankowsky, The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nature structural & molecular biology 13, 981-986 (2006).
68. C. Merz, H. Urlaub, C. L. Will, R. Lührmann, Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA 13, 116-128 (2007).
69. M. C. Lai, Y. H. Lee, W. Y. Tarn, The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Molecular biology of the cell 19, 3847-3858 (2008).
70. V. S. Yedavalli, C. Neuveut, Y. H. Chi, L. Kleiman, K. T. Jeang, Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119, 381-392 (2004).
71. D. Soulat et al., The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. The EMBO Journal 27, 2135-2146 (2008).
72. C. H. Chao et al., DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer research 66, 6579-6588 (2006).
73. M. Botlagunta et al., Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 27, 3912-3922 (2008).
74. H. Oshiumi, K. Sakai, M. Matsumoto, T. Seya, DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential. European Journal of Immunology 40, 940-948 (2010).
75. L. Gu, A. Fullam, R. Brennan, M. Schroder, Human DEAD box helicase 3 couples IkappaB kinase epsilon to interferon regulatory factor 3 activation. Molecular and cellular biology 33, 2004-2015 (2013).
76. L. R. You et al., Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 73, 2841-2853 (1999).
77. G. Randall et al., Cellular cofactors affecting hepatitis C virus infection and replication. Proceedings of the National Academy of Sciences of the United States of America 104, 12884-12889 (2007).
78. Y. Ariumi et al., DDX3 DEAD-Box RNA Helicase Is Required for Hepatitis C Virus RNA Replication. Journal of Virology 81, 13922-13926 (2007).
79. M.-C. Lai et al., Human DDX3 Interacts with the HIV-1 Tat Protein to Facilitate Viral mRNA Translation. PLOS ONE 8, e68665 (2013).
80. C. Li et al., Cellular DDX3 regulates Japanese encephalitis virus replication by interacting with viral un-translated regions. Virology 449, 70-81 (2014).
81. H. Wang, S. Kim, W. S. Ryu, DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J Virol 83, 5815-5824 (2009).
82. C. Ko, S. Lee, M. P. Windisch, W.-S. Ryu, DDX3 DEAD-Box RNA Helicase Is a Host Factor That Restricts Hepatitis B Virus Replication at the Transcriptional Level. Journal of Virology 88, 13689-13698 (2014).
83. F. Ritossa, A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18, 571-573 (1962).
84. M. J. Schlesinger, Heat shock proteins. The Journal of biological chemistry 265, 12111-12114 (1990).
85. R. I. Morimoto, M. P. Kline, D. N. Bimston, J. J. Cotto, The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays in biochemistry 32, 17-29 (1997).
86. H. H. Kampinga et al., Guidelines for the nomenclature of the human heat shock proteins. Cell stress & chaperones 14, 105-111 (2009).
87. E. B. Bertelsen, H. Zhou, D. F. Lowry, G. C. Flynn, F. W. Dahlquist, Topology and dynamics of the 10 kDa C-terminal domain of DnaK in solution. Protein science : a publication of the Protein Society 8, 343-354 (1999).
88. X. Qian, W. Hou, L. Zhengang, B. Sha, Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1. The Biochemical journal 361, 27-34 (2002).
89. J. Li, Y. Wu, X. Qian, B. Sha, Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex. The Biochemical journal 398, 353-360 (2006).
90. E. R. Johnson, D. B. McKay, Mapping the role of active site residues for transducing an ATP-induced conformational change in the bovine 70-kDa heat shock cognate protein. Biochemistry 38, 10823-10830 (1999).
91. K. Mapa et al., The conformational dynamics of the mitochondrial Hsp70 chaperone. Molecular cell 38, 89-100 (2010).
92. J. H. Ha, D. B. McKay, ATPase kinetics of recombinant bovine 70 kDa heat shock cognate protein and its amino-terminal ATPase domain. Biochemistry 33, 14625-14635 (1994).
93. R. Jordan, R. McMacken, Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins. The Journal of biological chemistry 270, 4563-4569 (1995).
94. J. Jiang, K. Prasad, E. M. Lafer, R. Sousa, Structural basis of interdomain communication in the Hsc70 chaperone. Molecular cell 20, 513-524 (2005).
95. B. Westermann, C. Prip-Buus, W. Neupert, E. Schwarz, The role of the GrpE homologue, Mge1p, in mediating protein import and protein folding in mitochondria. Embo j 14, 3452-3460 (1995).
96. S. Laloraya, P. J. Dekker, W. Voos, E. A. Craig, N. Pfanner, Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of preproteins. Molecular and cellular biology 15, 7098-7105 (1995).
97. M. Kabani, C. McLellan, D. A. Raynes, V. Guerriero, J. L. Brodsky, HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS letters 531, 339-342 (2002).
98. Y. Shomura et al., Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Molecular cell 17, 367-379 (2005).
99. S. Polier, Z. Dragovic, F. U. Hartl, A. Bracher, Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068-1079 (2008).
100. M. Kabbage, M. B. Dickman, The BAG proteins: a ubiquitous family of chaperone regulators. Cellular and molecular life sciences : CMLS 65, 1390-1402 (2008).
101. T. G. Chappell et al., Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45, 3-13 (1986).
102. R. Sousa, E. M. Lafer, The role of molecular chaperones in clathrin mediated vesicular trafficking. Frontiers in Molecular Biosciences 2, 26 (2015).
103. E. Eisenberg, L. E. Greene, Multiple Roles of Auxilin and Hsc70 in Clathrin-Mediated Endocytosis. Traffic 8, 640-646 (2007).
104. A. Ciechanover, The ubiquitin-proteasome pathway: on protein death and cell life. Embo j 17, 7151-7160 (1998).
105. B. Bercovich et al., Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. The Journal of biological chemistry 272, 9002-9010 (1997).
106. V. Lamian, G. M. Small, C. M. Feldherr, Evidence for the existence of a novel mechanism for the nuclear import of Hsc70. Experimental cell research 228, 84-91 (1996).
107. F. Tsukahara, Y. Maru, Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. The Journal of biological chemistry 279, 8867-8872 (2004).
108. W. J. Chirico, M. G. Waters, G. Blobel, 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332, 805-810 (1988).
109. R. J. Deshaies, B. D. Koch, M. Werner-Washburne, E. A. Craig, R. Schekman, A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800-805 (1988).
110. K. Kamiguchi et al., Disruption of the association of 73 kDa heat shock cognate protein with transporters associated with antigen processing (TAP) decreases TAP-dependent translocation of antigenic peptides into the endoplasmic reticulum. Microbiology and immunology 52, 94-106 (2008).
111. J. S. Blum, P. A. Wearsch, P. Cresswell, Pathways of antigen processing. Annual review of immunology 31, 443-473 (2013).
112. N. Panjwani, O. Akbari, S. Garcia, M. Brazil, B. Stockinger, The HSC73 molecular chaperone: involvement in MHC class II antigen presentation. Journal of immunology (Baltimore, Md. : 1950) 163, 1936-1942 (1999).
113. I. Auger, J. M. Escola, J. P. Gorvel, J. Roudier, HLA-DR4 and HLA-DR10 motifs that carry susceptibility to rheumatoid arthritis bind 70-kD heat shock proteins. Nature medicine 2, 306-310 (1996).
114. X. Lahaye, A. Vidy, B. Fouquet, D. Blondel, Hsp70 Protein Positively Regulates Rabies Virus Infection. Journal of Virology 86, 4743-4751 (2012).
115. R. Manzoor et al., Heat Shock Protein 70 Modulates Influenza A Virus Polymerase Activity. Journal of Biological Chemistry, (2014).
116. S. Taguwa et al., Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Cell 163, 1108-1123 (2015).
117. S. Pujhari et al., Heat Shock Protein 70 (Hsp70) Is Involved In The Zika Virus Cellular Infection Process. bioRxiv, (2017).
118. M. Gao et al., The multi-targeted kinase inhibitor sorafenib inhibits enterovirus 71 replication by regulating IRES-dependent translation of viral proteins. Antiviral Research 106, 80-85 (2014).
119. M. Radi et al., Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: Towards the next generation HIV-1 inhibitors. Bioorganic & Medicinal Chemistry Letters 22, 2094-2098 (2012).
120. Y.-L. Tsou et al., Heat Shock protein 90: Role in Enterovirus 71 Entry and Assembly and Potential Target for Therapy. PLOS ONE 8, e77133 (2013).
121. R. Y. L. Wang et al., Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly. Virology 443, 236-247 (2013).
122. D. G. Macejak, P. Sarnow, Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells. Journal of Virology 66, 1520-1527 (1992).
123. R. Soto-Rifo et al., DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. The EMBO Journal 31, 3745-3756 (2012).
124. D. Sun, S. Chen, A. Cheng, M. Wang, Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells. Viruses 8, 82 (2016).
125. J. P. White, L. C. Reineke, R. E. Lloyd, Poliovirus Switches to an eIF2-Independent Mode of Translation during Infection. Journal of Virology 85, 8884-8893 (2011).
126. J. R. Jheng, K. S. Lau, W. F. Tang, M. S. Wu, J. T. Horng, Endoplasmic reticulum stress is induced and modulated by enterovirus 71. Cellular microbiology 12, 796-813 (2010).
127. J. R. Jheng, J. Y. Ho, J. T. Horng, ER stress, autophagy, and RNA viruses. Frontiers in microbiology 5, 388 (2014).
128. J.-R. Jheng, S.-C. Wang, C.-R. Jheng, J.-T. Horng, Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication. Emerging Microbes & Infections 5, e23 (2016).
129. Y. Hayashi et al., Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X. Microbes and infection 11, 394-402 (2009).
130. K. Watanabe et al., Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS letters 580, 5785-5790 (2006).
131. N. Imamoto et al., Antibodies against 70-kD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins. The Journal of cell biology 119, 1047-1061 (1992).
132. Y. Okuno, N. Imamoto, Y. Yoneda, 70-kDa heat-shock cognate protein colocalizes with karyophilic proteins into the nucleus during their transport in vitro. Experimental cell research 206, 134-142 (1993).
133. F. Stricher, C. Macri, M. Ruff, S. Muller, HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 9, 1937-1954 (2013).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top