|
1. T. Solomon et al., Virology, epidemiology, pathogenesis, and control of enterovirus 71. The Lancet. Infectious diseases 10, 778-790 (2010). 2. A. V. Paul et al., Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol 77, 891-904 (2003). 3. J. Y. Lin et al., Viral and host proteins involved in picornavirus life cycle. Journal of biomedical science 16, 103 (2009). 4. N. M. Kuyumcu-Martinez, M. E. Van Eden, P. Younan, R. E. Lloyd, Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Molecular and cellular biology 24, 1779-1790 (2004). 5. B. Wang et al., Enterovirus 71 Protease 2Apro Targets MAVS to Inhibit Anti-Viral Type I Interferon Responses. PLOS Pathogens 9, e1003231 (2013). 6. R. Sharma, S. Raychaudhuri, A. Dasgupta, Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320, 195-205 (2004). 7. S. P. Amineva, A. G. Aminev, A. C. Palmenberg, J. E. Gern, Rhinovirus 3C protease precursors 3CD and 3CD′ localize to the nuclei of infected cells. Journal of General Virology 85, 2969-2979 (2004). 8. M. E. Clark, P. M. Lieberman, A. J. Berk, A. Dasgupta, Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Molecular and cellular biology 13, 1232-1237 (1993). 9. P. Yalamanchili, U. Datta, A. Dasgupta, Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. Journal of Virology 71, 1220-1226 (1997). 10. K.-F. Weng, M.-L. Li, C.-T. Hung, S.-R. Shih, Enterovirus 71 3C Protease Cleaves a Novel Target CstF-64 and Inhibits Cellular Polyadenylation. PLOS Pathogens 5, e1000593 (2009). 11. F. J. M. van Kuppeveld et al., Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. The EMBO Journal 16, 3519 (1997). 12. R. Aldabe, A. Barco, L. Carrasco, Membrane Permeabilization by Poliovirus Proteins 2B and 2BC. Journal of Biological Chemistry 271, 23134-23137 (1996). 13. J. R. Doedens, K. Kirkegaard, Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. The EMBO Journal 14, 894-907 (1995). 14. A. S. de Jong et al., Functional Analysis of Picornavirus 2B Proteins: Effects on Calcium Homeostasis and Intracellular Protein Trafficking. Journal of Virology 82, 3782-3790 (2008). 15. H. Xia et al., Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLOS Pathogens 11, e1005067 (2015). 16. R. Banerjee, A. Dasgupta, Interaction of picornavirus 2C polypeptide with the viral negative-strand RNA. The Journal of general virology 82, 2621-2627 (2001). 17. R. Banerjee, A. Echeverri, A. Dasgupta, Poliovirus-encoded 2C polypeptide specifically binds to the 3'-terminal sequences of viral negative-strand RNA. Journal of Virology 71, 9570-9578 (1997). 18. H. Du et al., Enterovirus 71 2C Protein Inhibits NF-kappaB Activation by Binding to RelA(p65). Scientific reports 5, 14302 (2015). 19. Z. Zheng et al., Enterovirus 71 2C Protein Inhibits TNF-α–Mediated Activation of NF-κB by Suppressing IκB Kinase β Phosphorylation. The Journal of Immunology 187, 2202 (2011). 20. K. Fujita et al., Membrane Topography of the Hydrophobic Anchor Sequence of Poliovirus 3A and 3AB Proteins and the Functional Effect of 3A/3AB Membrane Association upon RNA Replication. Biochemistry 46, 5185-5199 (2007). 21. J. S. Towner, T. V. Ho, B. L. Semler, Determinants of Membrane Association for Poliovirus Protein 3AB. Journal of Biological Chemistry 271, 26810-26818 (1996). 22. W. Xiang, K. S. Harris, L. Alexander, E. Wimmer, Interaction between the 5'-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. Journal of Virology 69, 3658-3667 (1995). 23. S. J. Plotch, O. Palant, Poliovirus protein 3AB forms a complex with and stimulates the activity of the viral RNA polymerase, 3Dpol. Journal of Virology 69, 7169-7179 (1995). 24. J. Jore, B. De Geus, R. J. Jackson, P. H. Pouwels, B. E. Enger-Valk, Poliovirus Protein 3CD Is the Active Protease for Processing of the Precursor Protein P1 in vitro. Journal of General Virology 69, 1627-1636 (1988). 25. M. F. Ypma-Wong, P. G. Dewalt, V. H. Johnson, J. G. Lamb, B. L. Semler, Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166, 265-270 (1988). 26. E.-J. Yi, Y.-J. Shin, J.-H. Kim, T.-G. Kim, S.-Y. Chang, Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res 6, 4-14 (2017). 27. M. G. Rossmann et al., Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145-153 (1985). 28. P.-N. Huang, S.-R. Shih, Update on enterovirus 71 infection. Current Opinion in Virology 5, 98-104 (2014). 29. P.-Y. Su et al., Cell Surface Nucleolin Facilitates Enterovirus 71 Binding and Infection. Journal of Virology 89, 4527-4538 (2015). 30. Y.-W. Lin et al., Human SCARB2-Mediated Entry and Endocytosis of EV71. PLOS ONE 7, e30507 (2012). 31. J. L. Whitton, C. T. Cornell, R. Feuer, Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Micro 3, 765-776 (2005). 32. S. Curry et al., Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. Journal of Virology 71, 9743-9752 (1997). 33. N. J. Schmidt, E. H. Lennette, H. H. Ho, An apparently new enterovirus isolated from patients with disease of the central nervous system. The Journal of infectious diseases 129, 304-309 (1974). 34. M. L. Kennett et al., Enterovirus type 71 infection in Melbourne. Bulletin of the World Health Organization 51, 609-615 (1974). 35. J. Blomberg et al., New Eenterovirus Type Associated With Epidemic of Aspetic Meningitis and/or Hand, Foot, and Mouth Disease. The Lancet 304, 112 (1974). 36. A. Hagiwara, I. Tagaya, T. Yoneyama, Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology 9, 60-63 (1978). 37. F. Gobara, A. Itagaki, Y. Ito, K. Saito, T. Katsumoto, Properties of virus isolated from an epidemic of hand-foot-and-mouth disease in 1973 in the city of Matsue. Comparison with Coxsackievirus group A type 16 prototype. Microbiology and immunology 21, 207-217 (1977). 38. Y. Ishimaru, S. Nakano, K. Yamaoka, S. Takami, Outbreaks of hand, foot, and mouth disease by enterovirus 71. High incidence of complication disorders of central nervous system. Archives of disease in childhood 55, 583-588 (1980). 39. M. Ho et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. The New England journal of medicine 341, 929-935 (1999). 40. P. C. McMinn, An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiology Reviews 26, 91-107 (2002). 41. Y. Wang et al., Enterovirus 71 infection in children with hand, foot, and mouth disease in Shanghai, China: epidemiology, clinical feature and diagnosis. Virology journal 12, 83 (2015). 42. C.-S. Chen et al., Retrograde Axonal Transport: a Major Transmission Route of Enterovirus 71 in Mice. Journal of Virology 81, 8996-9003 (2007). 43. G. Lozano, E. Martínez-Salas, Structural insights into viral IRES-dependent translation mechanisms. Current Opinion in Virology 12, 113-120 (2015). 44. T. R. Sweeney, I. S. Abaeva, T. V. Pestova, C. U. T. Hellen, The mechanism of translation initiation on Type 1 picornavirus IRESs. The EMBO Journal 33, 76 (2013). 45. A. V. Pisarev et al., Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol 78, 4487-4497 (2004). 46. T. R. Sweeney, V. Dhote, Y. Yu, C. U. T. Hellen, A Distinct Class of Internal Ribosomal Entry Site in Members of the Kobuvirus and Proposed Salivirus and Paraturdivirus Genera of the Picornaviridae. Journal of Virology 86, 1468-1486 (2012). 47. E. Martínez-Salas, R. Francisco-Velilla, J. Fernandez-Chamorro, G. Lozano, R. Diaz-Toledano, Picornavirus IRES elements: RNA structure and host protein interactions. Virus Research 206, 62-73 (2015). 48. D. E. Andreev et al., Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA. RNA 13, 1366-1374 (2007). 49. S. de Breyne, Y. Yu, A. Unbehaun, T. V. Pestova, C. U. Hellen, Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proceedings of the National Academy of Sciences of the United States of America 106, 9197-9202 (2009). 50. V. G. Kolupaeva, S. d. Breyne, T. V. Pestova, C. U. T. Hellen, In Vitro Reconstitution and Biochemical Characterization of Translation Initiation by Internal Ribosomal Entry. Methods in Enzymology 430, 409-439 (2007). 51. K. Meerovitch et al., La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67, 3798-3807 (1993). 52. C. U. Hellen, T. V. Pestova, M. Litterst, E. Wimmer, The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5' nontranslated region. J Virol 68, 941-950 (1994). 53. P. Sean, J. H. Nguyen, B. L. Semler, Altered interactions between stem-loop IV within the 5' noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity. Virology 389, 45-58 (2009). 54. L. B. Blyn, J. S. Towner, B. L. Semler, E. Ehrenfeld, Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol 71, 6243-6246 (1997). 55. A. V. Gamarnik, R. Andino, Two functional complexes formed by KH domain containing proteins with the 5' noncoding region of poliovirus RNA. Rna 3, 882-892 (1997). 56. S. L. Hunt, J. J. Hsuan, N. Totty, R. J. Jackson, unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes & development 13, 437-448 (1999). 57. J. Y. Lin et al., Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5' untranslated region and participates in virus replication. The Journal of general virology 89, 2540-2549 (2008). 58. J.-Y. Lin et al., hnRNP A1 Interacts with the 5′ Untranslated Regions of Enterovirus 71 and Sindbis Virus RNA and Is Required for Viral Replication. Journal of Virology 83, 6106-6114 (2009). 59. L. He et al., Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. The EMBO Journal 19, 1034-1044 (2000). 60. P. N. Huang et al., Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic acids research 39, 9633-9648 (2011). 61. J. Y. Lin, M. L. Li, S. R. Shih, Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic acids research 37, 47-59 (2009). 62. L.-L. Chen et al., Enterovirus 71 Infection Cleaves a Negative Regulator for Viral Internal Ribosomal Entry Site-Driven Translation. Journal of Virology 87, 3828-3838 (2013). 63. C.-T. Hung et al., Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product. PLOS Pathogens 12, e1005959 (2016). 64. H. Zhang, L. Song, H. Cong, P. Tien, Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation. Journal of Virology 89, 10031-10043 (2015). 65. J.-Y. Lin, G. Brewer, M.-L. Li, HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication. PLOS ONE 10, e0140291 (2015). 66. W. Y. Tarn, T. H. Chang, The current understanding of Ded1p/DDX3 homologs from yeast to human. RNA biology 6, 17-20 (2009). 67. Q. Yang, E. Jankowsky, The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nature structural & molecular biology 13, 981-986 (2006). 68. C. Merz, H. Urlaub, C. L. Will, R. Lührmann, Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA 13, 116-128 (2007). 69. M. C. Lai, Y. H. Lee, W. Y. Tarn, The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Molecular biology of the cell 19, 3847-3858 (2008). 70. V. S. Yedavalli, C. Neuveut, Y. H. Chi, L. Kleiman, K. T. Jeang, Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119, 381-392 (2004). 71. D. Soulat et al., The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. The EMBO Journal 27, 2135-2146 (2008). 72. C. H. Chao et al., DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer research 66, 6579-6588 (2006). 73. M. Botlagunta et al., Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 27, 3912-3922 (2008). 74. H. Oshiumi, K. Sakai, M. Matsumoto, T. Seya, DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential. European Journal of Immunology 40, 940-948 (2010). 75. L. Gu, A. Fullam, R. Brennan, M. Schroder, Human DEAD box helicase 3 couples IkappaB kinase epsilon to interferon regulatory factor 3 activation. Molecular and cellular biology 33, 2004-2015 (2013). 76. L. R. You et al., Hepatitis C virus core protein interacts with cellular putative RNA helicase. J Virol 73, 2841-2853 (1999). 77. G. Randall et al., Cellular cofactors affecting hepatitis C virus infection and replication. Proceedings of the National Academy of Sciences of the United States of America 104, 12884-12889 (2007). 78. Y. Ariumi et al., DDX3 DEAD-Box RNA Helicase Is Required for Hepatitis C Virus RNA Replication. Journal of Virology 81, 13922-13926 (2007). 79. M.-C. Lai et al., Human DDX3 Interacts with the HIV-1 Tat Protein to Facilitate Viral mRNA Translation. PLOS ONE 8, e68665 (2013). 80. C. Li et al., Cellular DDX3 regulates Japanese encephalitis virus replication by interacting with viral un-translated regions. Virology 449, 70-81 (2014). 81. H. Wang, S. Kim, W. S. Ryu, DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J Virol 83, 5815-5824 (2009). 82. C. Ko, S. Lee, M. P. Windisch, W.-S. Ryu, DDX3 DEAD-Box RNA Helicase Is a Host Factor That Restricts Hepatitis B Virus Replication at the Transcriptional Level. Journal of Virology 88, 13689-13698 (2014). 83. F. Ritossa, A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18, 571-573 (1962). 84. M. J. Schlesinger, Heat shock proteins. The Journal of biological chemistry 265, 12111-12114 (1990). 85. R. I. Morimoto, M. P. Kline, D. N. Bimston, J. J. Cotto, The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays in biochemistry 32, 17-29 (1997). 86. H. H. Kampinga et al., Guidelines for the nomenclature of the human heat shock proteins. Cell stress & chaperones 14, 105-111 (2009). 87. E. B. Bertelsen, H. Zhou, D. F. Lowry, G. C. Flynn, F. W. Dahlquist, Topology and dynamics of the 10 kDa C-terminal domain of DnaK in solution. Protein science : a publication of the Protein Society 8, 343-354 (1999). 88. X. Qian, W. Hou, L. Zhengang, B. Sha, Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1. The Biochemical journal 361, 27-34 (2002). 89. J. Li, Y. Wu, X. Qian, B. Sha, Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex. The Biochemical journal 398, 353-360 (2006). 90. E. R. Johnson, D. B. McKay, Mapping the role of active site residues for transducing an ATP-induced conformational change in the bovine 70-kDa heat shock cognate protein. Biochemistry 38, 10823-10830 (1999). 91. K. Mapa et al., The conformational dynamics of the mitochondrial Hsp70 chaperone. Molecular cell 38, 89-100 (2010). 92. J. H. Ha, D. B. McKay, ATPase kinetics of recombinant bovine 70 kDa heat shock cognate protein and its amino-terminal ATPase domain. Biochemistry 33, 14625-14635 (1994). 93. R. Jordan, R. McMacken, Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins. The Journal of biological chemistry 270, 4563-4569 (1995). 94. J. Jiang, K. Prasad, E. M. Lafer, R. Sousa, Structural basis of interdomain communication in the Hsc70 chaperone. Molecular cell 20, 513-524 (2005). 95. B. Westermann, C. Prip-Buus, W. Neupert, E. Schwarz, The role of the GrpE homologue, Mge1p, in mediating protein import and protein folding in mitochondria. Embo j 14, 3452-3460 (1995). 96. S. Laloraya, P. J. Dekker, W. Voos, E. A. Craig, N. Pfanner, Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of preproteins. Molecular and cellular biology 15, 7098-7105 (1995). 97. M. Kabani, C. McLellan, D. A. Raynes, V. Guerriero, J. L. Brodsky, HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS letters 531, 339-342 (2002). 98. Y. Shomura et al., Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Molecular cell 17, 367-379 (2005). 99. S. Polier, Z. Dragovic, F. U. Hartl, A. Bracher, Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133, 1068-1079 (2008). 100. M. Kabbage, M. B. Dickman, The BAG proteins: a ubiquitous family of chaperone regulators. Cellular and molecular life sciences : CMLS 65, 1390-1402 (2008). 101. T. G. Chappell et al., Uncoating ATPase is a member of the 70 kilodalton family of stress proteins. Cell 45, 3-13 (1986). 102. R. Sousa, E. M. Lafer, The role of molecular chaperones in clathrin mediated vesicular trafficking. Frontiers in Molecular Biosciences 2, 26 (2015). 103. E. Eisenberg, L. E. Greene, Multiple Roles of Auxilin and Hsc70 in Clathrin-Mediated Endocytosis. Traffic 8, 640-646 (2007). 104. A. Ciechanover, The ubiquitin-proteasome pathway: on protein death and cell life. Embo j 17, 7151-7160 (1998). 105. B. Bercovich et al., Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. The Journal of biological chemistry 272, 9002-9010 (1997). 106. V. Lamian, G. M. Small, C. M. Feldherr, Evidence for the existence of a novel mechanism for the nuclear import of Hsc70. Experimental cell research 228, 84-91 (1996). 107. F. Tsukahara, Y. Maru, Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. The Journal of biological chemistry 279, 8867-8872 (2004). 108. W. J. Chirico, M. G. Waters, G. Blobel, 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332, 805-810 (1988). 109. R. J. Deshaies, B. D. Koch, M. Werner-Washburne, E. A. Craig, R. Schekman, A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800-805 (1988). 110. K. Kamiguchi et al., Disruption of the association of 73 kDa heat shock cognate protein with transporters associated with antigen processing (TAP) decreases TAP-dependent translocation of antigenic peptides into the endoplasmic reticulum. Microbiology and immunology 52, 94-106 (2008). 111. J. S. Blum, P. A. Wearsch, P. Cresswell, Pathways of antigen processing. Annual review of immunology 31, 443-473 (2013). 112. N. Panjwani, O. Akbari, S. Garcia, M. Brazil, B. Stockinger, The HSC73 molecular chaperone: involvement in MHC class II antigen presentation. Journal of immunology (Baltimore, Md. : 1950) 163, 1936-1942 (1999). 113. I. Auger, J. M. Escola, J. P. Gorvel, J. Roudier, HLA-DR4 and HLA-DR10 motifs that carry susceptibility to rheumatoid arthritis bind 70-kD heat shock proteins. Nature medicine 2, 306-310 (1996). 114. X. Lahaye, A. Vidy, B. Fouquet, D. Blondel, Hsp70 Protein Positively Regulates Rabies Virus Infection. Journal of Virology 86, 4743-4751 (2012). 115. R. Manzoor et al., Heat Shock Protein 70 Modulates Influenza A Virus Polymerase Activity. Journal of Biological Chemistry, (2014). 116. S. Taguwa et al., Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Cell 163, 1108-1123 (2015). 117. S. Pujhari et al., Heat Shock Protein 70 (Hsp70) Is Involved In The Zika Virus Cellular Infection Process. bioRxiv, (2017). 118. M. Gao et al., The multi-targeted kinase inhibitor sorafenib inhibits enterovirus 71 replication by regulating IRES-dependent translation of viral proteins. Antiviral Research 106, 80-85 (2014). 119. M. Radi et al., Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: Towards the next generation HIV-1 inhibitors. Bioorganic & Medicinal Chemistry Letters 22, 2094-2098 (2012). 120. Y.-L. Tsou et al., Heat Shock protein 90: Role in Enterovirus 71 Entry and Assembly and Potential Target for Therapy. PLOS ONE 8, e77133 (2013). 121. R. Y. L. Wang et al., Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly. Virology 443, 236-247 (2013). 122. D. G. Macejak, P. Sarnow, Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells. Journal of Virology 66, 1520-1527 (1992). 123. R. Soto-Rifo et al., DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. The EMBO Journal 31, 3745-3756 (2012). 124. D. Sun, S. Chen, A. Cheng, M. Wang, Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells. Viruses 8, 82 (2016). 125. J. P. White, L. C. Reineke, R. E. Lloyd, Poliovirus Switches to an eIF2-Independent Mode of Translation during Infection. Journal of Virology 85, 8884-8893 (2011). 126. J. R. Jheng, K. S. Lau, W. F. Tang, M. S. Wu, J. T. Horng, Endoplasmic reticulum stress is induced and modulated by enterovirus 71. Cellular microbiology 12, 796-813 (2010). 127. J. R. Jheng, J. Y. Ho, J. T. Horng, ER stress, autophagy, and RNA viruses. Frontiers in microbiology 5, 388 (2014). 128. J.-R. Jheng, S.-C. Wang, C.-R. Jheng, J.-T. Horng, Enterovirus 71 induces dsRNA/PKR-dependent cytoplasmic redistribution of GRP78/BiP to promote viral replication. Emerging Microbes & Infections 5, e23 (2016). 129. Y. Hayashi et al., Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X. Microbes and infection 11, 394-402 (2009). 130. K. Watanabe et al., Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS letters 580, 5785-5790 (2006). 131. N. Imamoto et al., Antibodies against 70-kD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins. The Journal of cell biology 119, 1047-1061 (1992). 132. Y. Okuno, N. Imamoto, Y. Yoneda, 70-kDa heat-shock cognate protein colocalizes with karyophilic proteins into the nucleus during their transport in vitro. Experimental cell research 206, 134-142 (1993). 133. F. Stricher, C. Macri, M. Ruff, S. Muller, HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy 9, 1937-1954 (2013).
|