跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 16:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉耀仁
研究生(外文):Yao-Ren Liu
論文名稱:鎳鋁介金屬與碳化鈦之燃燒合成與同步緻密化
論文名稱(外文):Combustion synthesis and simultaneous densification of NiAl intermetallic material and titanium carbide
指導教授:陳建忠陳建忠引用關係
指導教授(外文):Chien-Chong Chen
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:105
中文關鍵詞:自燃法燃燒合成法緻密化鎳鋁介金屬碳化鈦
外文關鍵詞:SHScombustion synthesisdensificationNiAlTiC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為利用高溫自行燃燒合成法(SHS),配合上電動油壓機同步施壓,以合成高緻密材料之研究。研究中選擇的系統為鎳鋁介金屬(NiAl)與碳化鈦(TiC)兩種,整個燃燒合成與緻密化的過程皆在低氧濃度的手套箱反應器內進行,而油壓機方面採加壓主體與油箱分離之設計。實驗中改變的參數為施壓壓力與施壓時機,合成之產物則進行相對密度、顯微結構、X光繞射及維氏硬度等分析。
由分析結果,我們以588 MPa的施壓壓力及反應後0秒的施壓時機,分別獲得相對密度為99.0 %及81.1 %的NiAl及TiC產物,另外對於施壓壓力與施壓時機的改變,我們發現:
NiAl系統
1. 施壓壓力的增加,有助於產物相對密度的增加、晶粒大小的縮小、硬度的提升以及產物均勻性的改善,但其中晶粒大小及硬度並不會隨著壓力的再提升,而有明顯的改變。
2. 施壓時機的延後,會導致產物相對密度的下降,晶粒大小的增加,但兩者皆不會隨著施壓時機的再延後,而有明顯的改變。此外施壓時機的延後對於產物的硬度及均勻性並無明顯影響。
TiC系統
1. 施壓壓力的增加,有助於產物相對密度的增加、晶粒大小的縮小、及均勻性的改善,但其中相對密度及晶粒大小並不會隨著壓力的再提升,而有明顯的改變。此外,當施壓時機為反應後0秒時,壓力的增加反而會導致反應不完全的情況更加明顯。
2. 施壓時機的延後,會導致產物相對密度的下降,但隨著施壓時機的再延後,結構會愈來愈鬆散。

The thesis is to produce the densified materials via the self-propagating high-temperature synthesis(SHS) with a simultaneously pressing by a hydraulic press. In this research, nickel-aluminum intermetallic(NiAl) and titanium-carbide(TiC) material systems were studied. The experiment was carried out in a glove-box type reactor, with a hydraulic press, custom design with pressurized body and oil tank separated, sitting inside the reactor. Two main parameters were studied including compaction pressure and pressing time. The products were take subjected to density measurement, scanning electron microscope(SEM), X-ray diffraction(XRD) and Vickers hardness analysis.
According to results, under the 588 MPa and compaction at zero second after the end of combustion, the theoretical densities of NiAl and TiC were obtained 99.0% and 81.1%, respectively. Further, with compaction pressure and pressing time varied, we found that:
for NiAl system
1. The increase of compaction pressure increased the relative density, decreased the grain size, increased the sample hardness and improved the product uniformity. Grain size and hardness would not further change obviously by an increasing pressure.
2. The delay of pressing time would cause the decrease of relative density, increase of grain size. This determination reached to a certain degree if the time delayed more. Besides, the delay of pressing time did not influence hardness and uniformity of products significantly.
for TiC system
1. The increase of compaction pressure increased the relative density, decreased the grain size and improved the product uniformity. Relative density and grain size would not further change obviously by a increasing pressure. Besides, if pressing time is zero second after the end of combustion, the increase of compaction pressure would cause the incompleteness of reaction more significantly.
2. The delay of pressing time would cause the decrease of relative density, however, the structure would become looser if the time delayed more.

第一章 簡介1
1.1高溫自行燃燒合成法介紹1
1.2高溫自行燃燒合成法熱力學2
1.3高溫自行燃燒合成法理論5
1.3.1燃燒波速5
1.3.2活化能6
1.3.3溫度分布6
1.3.4燃燒模式:穩定和非穩定反應7
1.3.5平衡與非平衡機構9
1.3.6影響高溫自行燃燒合成反應的程序變數9
第二章 研究動機與文獻回顧12
2.1研究動機12
2.2文獻回顧13
2.2.1.熱壓法(Hot Pressing,HP)13
2.2.2熱均壓法(Hot Isostatic Pressing,HIP)14
2.2.3.擬-熱均壓法(Pseudo-Hot Isostatic Pressing,P-HIP)15
2.2.4動態施壓法(Dynamic Compaction,DC)16
第三章 實驗設計與實驗方法17
3.1實驗設計17
3.2實驗方法18
3.3儀器設備18
3.3.1手套箱反應器19
3.3.2 電動油壓機20
3.3.3 影像擷取系統21
3.4 藥品21
3.5 實驗前準備22
3.6 燃燒合成與同步緻密化裝置23
3.6.1 NiAl系統23
3.6.2 TiC系統24
3.7 實驗步驟24
3.8 分析方法25
3.8.1 相對密度測量25
3.8.2 顯微鏡結構觀察26
3.8.3 X光繞射分析28
3.8.4 硬度分析29
第四章 結果與討論30
4.1 NiAl系統30
4.1.1 NiAl燃燒合成與同
4.1.2 NiAl產物外形30
4.1.3 NiAl產物相對密度之探討31
4.1.4 NiAl顯微結構之探討32
4.1.5 X光繞射分析36
4.1.6 硬度分析36
4.2 TiC系統38
4.2.1 TiC燃燒合成與同步緻密化過程38
4.2.2 TiC產物外形探討38
4.2.3 TiC產物相對密度之探討40
4.2.4 TiC顯微結構之探討41
4.2.5 X光繞射分析43
4.2.6 硬度分析44
第五章 結論與展望45
5.1 NiAl系統45
5.2 TiC系統46
5.3 展望47
參考文獻100
符號說明105

英文參考文獻
[1] S. Saito, "Fine ceramics", Elsevier Pub., New York (1988).
[2] J. P. Lebrat, "Mechanistic and Processing Studies Related to Com-bustion Synthesis of Advanced Materials", Ph. D thesis, Univ of Nniv. of Notre Dame (1992).
[3] A. Varma and J. P. Lebrat, "Combustion Synthesis of Advanced Materials", Chem. Eng. Sci., 47, 2179 (1992).
[4] D. Luss, "Reaction Engineering of Advancd Ceramic Materials", Chem. Eng. Sci., 45, 1979 (1990).
[5] Z. A. Munir, and J. B. Holt, "Combustion and Plasma Synthesis of High Temperature Material", VCH Pub., New York (1990).
[6] Adachis, T. Wada, T. Mihara, Y. Miyamoto and M. Koizum, "High Pressure Self-Combustion Sintering of Alumina-Titanium Carbide Ceramic Composite", J. Am. Ceram. Soc., 73, 1451 (1990).
[7] J. B. Holt and Z. A. Munir, "Combustion Synthesis of Titanium Carbide:Theory and Experiment", J. Mater. Sci., 21, 251 (1986).
[8] J. B. Holt and S. D. Dunmead, "Self-Heating Synthesis of Materials", Annu. Rev. Mater. Sci., 21, 305 (1991).
[9] O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th Ed., Pergamon Press, New York (1979).
[10] T. B. Massalski, J. L. Murray, L. H. Bennett and H. Baker, "Binary Alloy Phase Diagrams.", American Society for Metals, Metals Park, Ohio (1986).
[11] Z. A. Munir, "Synthesis of High Temperature Materials by Self-propagating Combustion Method", Am. Ceram. Soc. Bull., 67,342 (1988).
[12] Z. A. Munir and U. Anselmi-Tamburini, "Self-Propagation Exothermic Reaction: The Synthesis of High Temperature Materials by Combustion", Mater. Sci. Rep., 3, 277 (1989).
[13] Y. S. Naiborodenko, G. V. Lavrenchuk and V. M. Filatov, "Self-Propagating High-Temperature Synthesis of Aluminides. I. Thermodynamic Analysis.", Sov. Power Metall. Met. Ceram.,21, 909 (1982).
[14] A. G. Strunina, T. M. Martenyanova, V. V. Barzykin and V. I. Ermakov, Combust. Explos. Shock Wave, 10, 449 (1974).
[15] S. D. Dunmead, D. W Readey, C. E. Semler, and J. B. Holt, "Kinetics of Combustion Synthesis in the Ti-C and Ti+C-Ni Systems", J. Am. Ceram. Soc., 72,2318 (1989).
[16] A. G. Merzhanov, "Self-propagationg High-Temperature Synthe-sis: Twenty Years of Search and Findings" edited by Z. A. Munir and J. B. Holt, Combustion and Plasma Synthesis of High Temperature Material', VCH Pub., New York (1990).
[17] Y. M. Maksimov, A. T. Pak, G. B. Lavrenchuk, Y. S. Nailborodenko, and A. G. Merzhanov, Combust. Explos. Shock Wave, 15, 415 (1979).
[18] B. J. Matkowsky, and G. J. Sivashinsky, SIAM. J. Appl. Math., 35 ,465 (1978).
[19] K. G. Shkadinskii, B. I. Khaikin, and A.G. Merzhanov,, Combust. Expols. Shock Wave, 7, 15 (1971).
[20] A. P. Aldushin, T. M. Martenyanova, A. G. Merzhanov, B. I. Khaikin and K. G. Shkadinskii, "Propagation of the Front of an Exothermic Reaction in Condensed Mixtures with the Interaction of the Components Through a Layer of High-Melting Product", Comb. Explos. Shock Wave, 8, 159 (1972).
[21] I. P. Borovinskaya and V. E. Loryan, "Self-Propagating Processes in the Formation of Solid Solutions in the Zirconium-Nitrogen System", Dokl. Akak. Nauk. SSSR, 231,1230 (1976).
[22] J. Wong, E. M. Larson, J. B. Holt, P. A. Waide, B. Rupp and R. Frahm, "Time-Resolved X-Ray Diffraction Study of Solid Combu-stion Reactions", Science, 249, 1406 (1990).
[23] A. G. Merzhanov, I. P. Borovinskaya and E. Volodin, "The Burning Mechanism of Porous Metallic Samples in Nitrogen", Dokl. Akad. Nauk SSSR, 206, 833 (1972).
[24] A. S. Rogachev, A. S. Mukas'yan and A. G. Merzhanov, "Structural Transitions in the Gasless Combustion of Titanium-Boron Systems", Dokl. Akad. Nauk. SSSR, 297, 1240 (1987).
[25] T. Kottke, L. J. Kecskes, A. Niiler, "Control if TiB2 SHS Reactions by Inert Dillutions and Mechanical Constraint", AIChE J., 36, 1581 (1990).
[26] Y. M. Maksimov, A. G. Merzhanov, A. T. Pak, A. G. Raskolenko and B. S. Braverman, Metally, 2, 219 (1985).
[27] J. B. Holt and Z. A. Munir, J. Mater. Sci., 21, 251 (1986).
[28] A. L. Dumont, D.S. Smith, C. Gault and J. P. Bonnet, "Preparation and Densification of MoSi2/Al2O3-Based Composites Using Self-Propagating High-Temperature Synthesis", Int. J. Self-Propagating High-Temperature Synthesis, 7, 269 (1998).
[29] B. H. Rabin and R. N. Wright, "Microstructure and Tensile Properties of Fe3Al Produced by Combustion Synthesis/Hot Isostatic Pressing", Metallurgical Transactions A, 23A, 35 (1992).
[30] S. Kashiwai, Y. Hayashi, M. Motoyama, Particulate Materials and Process, Advances in Powder Metallurgy and Particulate Materials, 465 (1992).
[31] L. Wang, M. R. Wixom and L. T. Thompson, "Structural and Mechanical Properties of TiB2 and TiC Prepared by Self-Propagating High-Temperature Synthesis/Dynamic Compaction", J. Materials Sci., 29, 534 (1994).
[32] J. Lis, Y. Miyamoto, R.Pampuch, K.Tanihata, "Ti3SiC-Based Materials Prepared by HIP-SHS Techniques", Materials Letters, 22, 163 (1995).
[33] J. C. LaSalvia, L. W. Meyer and M. A. Meyers, "Densification of Reaction-Synthesized Titanium Carbide by High-Velocity Forging", J. Am. Ceram. Soc., 75, 592 (1992).
[34] S. D. Dunmead, Z. A. Munir, J. B. Holt and D. D. Kingman, "Simultaneous Synthesis and Densification of TiC/Ni-Al Composites",. Material Sci., 26, 2410 (1991).
[35] R. Z. Yuan, "Composite Materials and Compositing Process by SHS Technology", Int. J. Self-Propagating High-Temperature Synthesis , 6, 265 (1997).
[36] Andrus Niiler, Laszlo Kecskes and Thomas Kottke, "SHS Materials Compaction Research at BRL", Int. J. Self-Propagating High-Temperature Synthesis, 1, 459 (1992).
[37] D. A. Hoke, M. A. Meyers, L. W. Meyer and G. T. Gray III, "Reaction Synthesis/Dynamic Compaction of Titanium Diboride" Metallurgical Transactions A, 23A, 77 (1992).
[38] James F. Shackelford, William Alexander and Jun S. Park, CRC Materials Science and Engineering Handbook, 2nd-Edition, CRC Press, Inc., United States, 50 (1994).
[39] C. T. Liu, R. W. Cahn and G. Sauthoff, Ordered Intermetallics-Physical Metallurgy and Mechanical Behaviour, Kluwer Academic Publishers, Netherlands, 645-662 (1992).
[40] E. I. Maksimov and K. G. Shkadinskii, Combust. Explos. Skock Waves USSR, 7, 392 (1971).
[41] B. I. Khaikin and A. G. Merzhanov, Combust. Explos. Skock Waves USSR, 2, 22 (1966).
中文參考文獻
[42] 曹靜廣,汪仁雄 編譯,精密陶瓷之應用,初版,機械技術出版社,台北市,26~27頁,民國81年。
[43] 韋孟育 編著,材料實驗方法-金相分析技術,初版,全華科技圖書股份有限公司,台北市,37、72頁,民國79年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林麗月,<晚明福建的食米不足問題>,《國立臺灣師範大學歷史學報》,第15期,1987年6月,頁一六一─一九○。
2. 浦廉一著、賴永祥譯,<清初遷界令考>,《臺灣風物》,21卷2期,1971年5月,頁一五一─一八○。
3. 陳三井,<赤手擎天,柱撐半壁河山─淺談臺灣對鄭成功的看法和評價>,《國文天地》,5卷11期,1990年4月,頁四○─四四。
4. 周雪玉,<施琅與鄭成功、姚啟聖二人關係之剖析>,《明史研究專刊》,第5期,1982年12月,頁二二七─二七七。
5. 周家安,<南明史地位與研究意義>,《明史研究專刊》,第2期,1979年9月,頁一─四二。
6. 范勝雄,<「鄭荷談判圖」試讀>,《臺灣文獻》,第47卷第4期,1996年12月,頁四七─六八。
7. 金成前,<明鄭重要將領史事分述>,《臺灣文獻》,第24卷第4期,1973年12月,頁六七─八五。
8. 周明德,<國姓爺鄭成功的威名震動東瀛>,《史聯雜誌》,19期,1991年12月,頁一六七─一七○。
9. 吳志鏗,<清代前期滿洲本位政策的擬訂與調整>,《國立臺灣師範大學歷史學報》,第22期,1994年6月,頁八五─一一七。
10. 何冠彪,<清高宗對南明歷史地位的處理>,《新史學》,7卷1期,1996年3月,頁一─二七。
11. 任長正,<清太祖太宗時代明清史戰考(一)(二)(三)(四)(五)>,《大陸雜誌》,14卷4期,1957年2月,頁一四─二○;14卷5期,1957年2月,頁一八─二七;14卷6期,1957年3月,頁二六─二九;14卷7期,1957年3月,頁二一─二九;14卷8期,1957年4月,頁一五─二○。
12. ───,<論明鄭的兵源>,《大陸雜誌》,41卷6期,1970年9月,頁二○─二九。
13. 石萬壽,<明鄭的軍事行政組織─明鄭兵制研究之三>,《臺灣文獻》,第26卷4期和27卷1期(合刊),1976年3月,頁五○─六六。
14. 方豪,<由順治八年福建武闈試題論鄭氏抗清的主力(上)--為紀念鄭成功復臺三百年而作>,《大陸雜誌》,22卷6期,1961年3月,頁一─二○。
15. 童怡[毛一波],<鄭清和議之經緯>,《臺灣文獻》,第6卷第3期,1955年9月,頁二九─三五。