跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 05:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王源國
研究生(外文):WANG, YUAN-KUO
論文名稱:石墨烯複合聚乙烯醇靜電紡絲層積於生物-電-芬頓微生物燃料電池電極之研究
論文名稱(外文):A study on the performance of electrospinning accumulated graphene/polyvinyl alcohol on the electrode of bio-electro-Fenton microbial fuel cells.
指導教授:王宜達王金燦王金燦引用關係
指導教授(外文):WANG, YI-TAWANG, CHIN-TSAN
口試委員:林榮慶吳翼貽黃佑民胡毓忠
口試委員(外文):LIN, ZONE-CHINGWU, YE-EEHUANG, YOU-MINHU, YUH-CHUNG
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:機械與機電工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:71
中文關鍵詞:靜電紡絲奈米纖維石墨烯微生物燃料電池生物-電-芬頓系統
外文關鍵詞:ElectrospinningNanometer FiberGrapheneMicrobial Fuel CellsBio-Electro-Fenton System
相關次數:
  • 被引用被引用:1
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
靜電紡絲技術係以高分子聚合物材料為導向,配合相應有機溶劑調配出適當紡絲溶液進行奈微米纖維成型的加工技術,其具有低加工成本與材料多樣化等特性;現今研究應用於微生物燃料電池已有跡可循,然僅針對質傳反應的交換膜與極板進行改良,目前研究極少與電芬頓反應相結合進行相關探討。
本研究以聚乙烯醇(polyvinylalcohol, PVA)作為複合極板的高分子聚合物材料,藉由添加石墨烯作為薄膜複合極板的觸媒並以銦錫氧化物(Indium Tin Oxide, ITO)導電玻璃作為複合纖維載台,應用於生物-電-芬頓微生物燃料電池(Bio-Electreo-Fenton Microbial Fuel Cell, BEFMFC)陰極極板,過程進行未添加、2wt%、4wt%、6wt%與8wt%石墨烯添加量,製備複合薄膜纖維極板應用於生物-電-芬頓微生物燃料電池陰極環境當中進行性能探討。
實驗以(1)纖維形貌與狀態,藉由接觸角量測儀對複合纖維親水性進行量測,並透過傅立葉紅外光譜(Fourier Transform Infrared Spectroscopy, FT-IR)對石墨烯與PVA靜電紡絲纖維結合官能基狀態分析;而後以掃描式電子顯微鏡(Scanning Electron Microscope, SEM)與穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)確認靜電紡絲纖維狀態與石墨烯的結合情形。(2)石墨烯複合PVA靜電紡絲層積ITO電極的電化學能力、電阻率與電導度,以四點探針進行石墨烯複合PVA電極電導度量測;由電化學量測儀使用循環伏安法(Cyclic Voltammogram, CV)分析不同電極個別電化學能力。(3)最後測量本研究所製備之複合極板於生物-電-芬頓微生物燃料電池之產電能力;生物-電-芬頓反應效率則藉由偶氮染料(Reactive Black 5, RB5)脫色度分析。
結果顯示,經接觸角親水性量測結果,接觸角隨著石墨烯添加量增加逐漸減小,於8wt%添加量時可達到10.71°,透過傅立葉紅外光譜分析確認石墨烯能成功與PVA結合,且石墨烯添加量其官能基特徵在4wt%時較為明顯。在SEM觀察部分,可發現纖維線徑隨著添加石墨烯含量提升而逐漸減小,當添加8wt%時纖維線徑縮減至103.74nm。電阻率與電導度量測顯示,於8wt%石墨烯添加量具最佳電導度1.46× 10-6(S/m);於循環伏安法掃描電化學活性分析部分,顯示於4wt%時石墨烯添加量具最佳電化學活性,綜上實驗分析,石墨烯添加量漸增,對於物理層面效果亦有逐漸提升之成效。
在生物-電-芬頓微生物燃料電池中進行系列化電池性能量測;結果顯示,石墨烯添加量為4wt%時之複合ITO極板具有最佳功率密度74.1mW/m2與開路電壓0.42V,循環伏安法分析亦為4wt%石墨烯添加量時具有最佳的氧化還原效果。而在RB5偶氮染料脫色度量測部分,4wt%石墨烯添加量時,系統具有最大脫色率為60.25%;顯示此時生物-電-芬頓反應效率最佳,亦即當石墨烯添加量為4wt%時與PVA具有最佳電化學反應效果。

Electrospinning was based on high polymer material oriented. It is the processing technology to coordinated with the organic solvent and modulate electrospinning solution to make micro fiber even nanofiber, have low processing costs and material characteristics diversification. Nowadays, electrospinning used in Microbial Fuel Cell (MFC) has been tracked in current study. But almost research only modified on proton exchange membrane and electrode plates. Only a few research combined with electro-Fenton-reaction to discuss.
In this study, polyvinyl alcohol (PVA) polymer as a composite plate material by adding grapheme film composite plate as a catalyst and Indium Tin Oxide (ITO) as a composite fiber stage. Used in Bio-Electro-Fenton Microbial Fuel Cell (BEFMFC) system cathode plates by adding 0wt%, 2wt%, 4wt%, 6wt% and 8wt% of graphene to composite with PVA and prepare the electrospinning nanofiber. Discuss with the BEFMFC’s power performance and efficiency of Fenton system.
Experimented with (1)composited fibers morphology and state by contact angle measurement instrument hydrophilic composite fibers were measured. Fourier transform infrared spectroscopy (FT-IR) to analysis the graphene and PVA electrospun fibers functional group binding state, and then to a scanning electron microscope (SEM) and a transmission electron microscope (TEM) to confirm the status of binding with the case of electrospinning PVA composited fibers with graphene. (2) To analysis the graphene/PVA electrospinning laminated ITO composited electrode’s electrochemical capacity, electrical resistivity and electrical conductivity, use the four-point probe measured the electrical conductivity of graphene/PVA composite electrode. Use electrochemical measuring instrument to measuring Cyclic voltammetry (CV) in different individual electrode electrochemical capacity. (3) Finally, a composite measure of the plate prepared in this study on BEFMFC’s Power performance and efficiency of azo dyes(Reactive Black5, RB5) decolorization by bio-electro-fenton system.
The results showed that by measuring the contact angle of the hydrophilic contact angle with increasing graphene additive amount is gradually reduced, at the time 8wt% added amount can be reduced to 10.71 °. Using fourier transform infrared spectroscopy confirmed that graphene can be successfully combined with the PVA and the added amount of graphene characterized its functional group was obvious at 4wt% of graphene. SEM can be observed with the addition of fiber diameter graphene content to enhance and gradually decreased when adding 8wt% fiber diameter can reduced to 103.74nm. Resistivity and the electrical conductivity measured with the 8wt% graphene contents has the best electrical conductance 1.46 × 10-6 (S/m).The CV in electrochemical activity scanning at 4wt% graphene contents have the best electrochemical activity.
BEFMFC in a series of energy measurement showed the composite ITO plate graphene addition amount of 4wt% has the best power density 74.1mW/m2 and the open circuit voltage (OCV) of 0.42V.Cyclic voltammetry analysis has the best effect of also 4wt% amount of graphene. The RB5 decolorization at 4wt% graphene additive amount has the highest rate of 60.25%, showing that bio-electro-Fenton reaction efficiency is best at 4wt% amount of graphene/PVA composited electrode. Also, the graphene addition amount of 4wt% with PVA to produce the composited electrode should has the best electrochemical reaction.

中文摘要............I
Abstract............II
謝誌............IV
目錄............V
圖目錄............VII
表目錄............XI
壹、前言............1
貳、文獻回顧............3
2.1 微生物燃料電池............3
2.1.1微生物燃料電池原理............4
2.1.2微生物燃料電池系統結構............5
2.2電-芬頓系統............6
2.3生物-電-芬頓微生物燃料電池............9
2.4生物-電-芬頓微生物燃料電池影響因素............11
2.4.1微生物燃料電池極板特性............12
2.4.2銦錫氧化物(Indium Tin Oxide, ITO) 導電薄膜............13
2.4.3石墨烯複合電極............14
2.5靜電紡絲(Electrospinnig)............16
參、實驗材料與方法............20
3.1實驗架構............20
3.2實驗材料............21
3.2.1石墨烯複合聚乙烯醇電紡纖維............21
3.2.2微生物燃料電池系統............25
3.3靜電紡絲溶液調配與製程參數............25
3.3.1高分子聚合物溶液調配............25
3.3.2靜電紡絲設備參數............27
3.4微生物-電-芬頓微生物燃料電池實驗前處理與場域建立............29
3.5實驗相關儀器設備............30
3.6.1層積形貌觀察............ 30
3.6.2接觸角............31
3.6.3官能基鍵結............31
3.6.4電極阻抗量測............ 32
3.6.5電化學特性分析............33
3.6.6極化曲線與功率密度............34
3.6.7脫色率............36
3.6.8誤差值(Error Bar)............37
肆、結果與討論............38
4.1不同含量石墨烯複合聚乙烯醇電紡纖維形貌分析............38
4.1.1石墨烯/PVA複合纖維親水性比較............38
4.1.2複合纖維官能基與鍵結............41
4.1.3 PVA複合纖維織構形貌SEM觀察............45
4.2石墨烯複合聚乙烯醇靜電紡絲層積於ITO之電極性能分析............49
4.2.1電阻率與電導度............49
4.2.2循環伏安法............51
4.3石墨烯複合聚乙烯醇靜電紡絲層積ITO電極於生物-電-芬頓系統微生物燃料電池電性分析 ............54
4.3.1功率密度與極化曲線分析............54
4.3.2定電阻放電分析............57
4.3.3脫色率量測............58
伍、結論............60
陸、未來研究方向............61
柒、參考文獻............62

1.Bruce E. Logan, Bert Hamelers, Rene Rozendal, Uwe Schoder, Jurg Keller, Stefano Freguia, Peter Aelterman, Willy Verstraete, Korneel Rabaey, ‘Microbial Fuel Cells: Methodology and Technology’, American Chemical Society, 17(2006), pp.5181-5192.
2.P.V. Nidheesh and R Gandhimathi, ‘Trends in Electro-Fenton Process for Water and Wastewater Treatment : An Overview’, DES, 299 (2012), pp.1-15.
3.Lijuan Zhang, Xuejiao Yin, Sam Fong Yau Li, ‘Bio-Electrochemical Degradation of Paracetamol in a Microbial Fuel Cell-Fenton System’, CHEMICAL ENGINEERING JOURNAL, 276 (2015), pp.185-92.
4.T. Schiliro, Tommasi, C. Armato, D. Hidalgo, D. Traversi, S. Bocchini, G. Gilli, C.F. Pirri, ‘The Study of Electrochemically Active Planktonic Microbes in Microbial Fuel Cells in Relation to Different Carbon-Based Anode Materials’, 106 (2016), pp.277-284.
5.J. Wang, F. Zhang, Y. Wang, Guangsheng Luo, Weibin Cai, ‘A Size-Controllable Preparation Method for Indium Tin Oxide Particles Using a Membrane Dispersion Micromixer’, CHEMICAL ENGINEERING JOURNAL, 293 (2016), pp.1-8 .
6.Ming-tung Sung, Min-hsing Chang and Ming-hua Ho, ‘Investigation of Cathode Electrocatalysts Composed of Electrospun Pt Nanowires and Pt / C for Proton Exchange Membrane Fuel Cells’, Journal of Power Sources, 249 (2014), pp.320-26.
7.Thorne, R., Hu, H., Schneider, K., Bombelli, P., Fisher, A., Peter, L.M., Dent, A., Cameron, P.J. Porous ceramic anode materials for photo-microbial fuel cells. J. Mat. Chem. 21 (44), (2011), pp.18055-18060.
8.Ming Fang, Chunmei Zhang and Qiang Chen, ‘Applied Surface Science Tuning the ITO Work Function by Capacitively Coupled Plasma and Its Application in Inverted Organic Solar Cells’, Applied Surface Science, 385 (2016), pp.28-33.
9.Wei-li Qu , Da-Ming Gu, Zhen-Bo Wang, Jing-Jia Zhanga, ‘Electrochimica Acta High Stability and High Activity Pd / ITO-CNTs Electrocatalyst for Direct Formic Acid Fuel Cell’, Electrochimica Acta, 137 (2014), pp.676-84.
10.M.C. Potter, Sc.D., M.A., Professor of Botany in the University of Durham, ‘Electrical Effects accompanying the Decomposition of Organic Compounds’, royalsociety publishing,(1911), pp.260-276.
11.A. K. Shukla , P. Suresh, S. Berchmans, A. Rajendran, ‘Biological Fuel Cells and Their Applications Biological Fuel Cells and Their Applications’, 2004, pp.455-468.
12.H.Wang and Zhiyong Jason Ren, ‘A Comprehensive Review of Microbial Electrochemical Systems as a Platform Technology’, Biotechnology Advances, 31.8 (2013), pp.1796-1807.
13.Defeng Xing, Shaoan Cheng, John M. Regan, Bruce E. Logan, ‘Biosensors and Bioelectronics Change in Microbial Communities in Acetate- and Glucose-Fed Microbial Fuel Cells in the Presence of Light’, 25 (2009), pp.105-11.
14.Bruce E Logan and John M Regan, ‘Electricity-Producing Bacterial Communities in Microbial Fuel Cells’, 14.12 (2006).
15.Jung Rae , Sok Hee Jung, John M. Regan, Bruce E. Logan, ‘Electricity Generation and Microbial Community Analysis of Alcohol Powered Microbial Fuel Cells’, 98 (2007), pp.2568-77 .
16.Hong Liu, Shaoan Cheng, Liping Huang, Bruce E. Logan, ‘Scale-up of Membrane-Free Single-Chamber Microbial Fuel Cells’, 179 (2008), pp.274-79 .
17.Aijie Wang , Wenzong Liu, Shaoan Cheng, Defeng Xing, Jizhong Zhou, Bruce E. Logan, ‘Source of Methane and Methods to Control Its Formation in Single Chamber Microbial Electrolysis Cells’, International Journal of Hydrogen Energy, 34.9 (2009), pp.3653-58 .
18.Bruce E Logan, ‘Microbial Fuel Cells’, Copyright by John Wiley & Sons, Inc, 2008.
19.Terry J Beveridge and others, ‘Electrically Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1’, 106.17 (2009), pp.7028-33.
20.Gemma Reguera, Kevin D. McCarthy, Teena Mehta, Julie S. Nicoll, Mark T. Tuominen & Derek R. Lovley, ‘Extracellular Electron Transfer via Microbial Nanowires’, nature, 435(2016), pp.1098-1101.
21.Korneel Rabaey, Nico Boon, Monica Hofte, Willy Verstraete, ‘Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer’, 70.9 (2004), pp.5373-82.
22.Korneel Rabaey and Nico Boon, ‘Microbial Phenazine Production Enhances Electron Transfer in’, 2005, pp.3401-8.
23.Shaoan Cheng and Hong Liu, ‘Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing’, 40.7 (2006), pp.2426-32.
24.Alireza Ahmadian Yazdi, LorenzoD’Angelo, NadaOmer, GraciaWindiasti, Xiaonan Lu, JieXu, ‘Biosensors and Bioelectronics Carbon Nanotube Modi Fi Cation of Microbial Fuel Cell Electrodes’, Biosensors and Bioelectronic, 85 (2016), pp.536-52.
25.Zhuwei Du, Haoran Li and Tingyue Gu, ‘A State of the Art Review on Microbial Fuel Cells : A Promising Technology for Wastewater Treatment and Bioenergy’, 25 (2007), pp.464-82.
26.Willy Verstraete and Korneel Rabaey, ‘Critical Review Microbial Fuel Cells : Methodology and Technology’, 40.17 (2006), pp.5181-92.
27.Zhongjian Li, Xingwang Zhang, Yuxuan Zeng, Lecheng Lei, ‘Bioresource Technology Electricity Production by an Overflow-Type Wetted-Wall Microbial Fuel Cell’, Bioresource Technology, 100.9 (2009), pp.2551-55 .
28.Xinhua Tang, Haoran Li, Zhuwei Du, How Yong Ng, ‘Short Communication A Phosphorus-Free Anolyte to Enhance Coulombic Ef Fi Ciency of Microbial Fuel Cells’, 268 (2014), pp.14-18 .
29.Guolong Lu , Youlong Zhu, Lu Lu , Kongliang Xu, Heming Wang, Yinghua Jin, Zhiyong Jason Ren, Zhenning Liu, Wei Zhang, ‘Iron-Rich Nanoparticle Encapsulated , Nitrogen Doped Porous Carbon Materials as Ef Fi Cient Cathode Electrocatalyst for Microbial Fuel Cells’, 315 (2016), pp.302-3 .
30.Yunlong Li , Baogang Zhang, Ming Cheng, Yalong Lia, Liting Haoa, Huaming Guo, ‘Spontaneous Arsenic ( III ) Oxidation with Bioelectricity Generation in Single-Chamber Microbial Fuel Cells’, Journal of Hazardous Materials, 306 (2016), pp.8-12.
31.Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol (2004), pp.2281-5.
32.Z.M. Qiang, Removal of selected hazardous organic compounds by electro-Fenton oxidation process, PhD Thesis, Proquest Information and Learning Company, the United States, (2002) , pp.10-20.
33.Jianhua Shen, Yunfeng Li, Yihua Zhu, Yanjie Hua, Chunzhong Li, ‘Journal of Environmental Chemical Engineering Aerosol Synthesis of Graphene-Fe3O4 Hollow Hybrid Microspheres for Heterogeneous Fenton and Electro-Fenton Reaction’, Biochemical Pharmacology, 4.2 (2016), pp.2469-76 .
34.Augustine O Ifelebuegu and Chinyere P Ezenwa, ‘Removal of Endocrine Disrupting Chemicals in Wastewater Treatment by Fenton-Like Oxidation’, (2011), pp.213-20.
35.Elodie Guivarch, Stephane Trevin and Claude Lahitte, ‘Degradation of Azo Dyes in Water by Electro-Fenton Process’,(2003), pp.38-44 .
36.Aida Kesraoui Abdessalem, Nizar Bellakhal, Nihal Oturan, Mohamed Dachraoui, Mehmet A. Oturan, ‘Treatment of a Mixture of Three Pesticides by Photo- and Electro-Fenton Processes ’, DES, 250.1 (2010), pp.450-55.
37.Ipek Gulkaya, Gulerman A Surucu and Filiz B Dilek, ‘Importance of H 2 O 2 / Fe 2 + Ratio in Fenton ’ S Treatment of a Carpet Dyeing Wastewater’, 136 (2006), pp.763-69 .
38.Min Sun, Ning Ning Wu, Lin Feng Zhai, Xiao Rui Ru, ‘Manipulate an Air – Cathode Fuel Cell toward Recovering Highly Active Heterogeneous Electro-Fenton Catalyst from the Fe ( II ) in Acid Mine Drainage’, MINERALS ENGINEERING, 84 (2015), pp.1-7.
39.Lei Zhou, Zhongxin Hu, Chao Zhang, Zhaoheng Bi, Tao Jin, Minghua Zhou, ‘Separation and Purification Techn Ology Electrogeneration of Hydrogen Peroxide for Electro-Fenton System by Oxygen Reduction Using Chemically Modified Graphite Felt Cathode’, Separation and Purification Technology, 111 (2013), pp.131-36.
40.Yifeng Zhang, Yong Wang and Irini Angelidaki, ‘Alternate Switching between Microbial Fuel Cell and Microbial Electrolysis Cell Operation as a New Method to Control H2O2 Level in Bioelectro-Fenton System’, Journal of Power Sources, 291 (2015), pp.108-16.
41.Lei Zhou, Zhongxin Hu, Chao Zhang, Zhaoheng Bi, Tao Jin, Minghua Zhou., Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode, Separation and Purification Technology, Volume 111, (2013), pp.131-136.
42.Chunhua Feng, Fangbai Li, Haiyang Liua, Xuemei Lang, Shuanshi Fan, ‘Electrochimica Acta A Dual-Chamber Microbial Fuel Cell with Conductive Film-Modified Anode and Cathode and Its Application for the Neutral Electro-Fenton Process’, Electrochimica Acta, 55.6 (2010), pp.2048-54.
43.Xiang qin Wang, Chuan Ping Liu, Yong Yuan, Fang bai L, ‘Arsenite Oxidation and Removal Driven by a Bio-Electro-Fenton Process under Neutral pH Conditions’, Journal of Hazardous Materials, 275 (2014), pp.200-209 .
44.María Ángeles Fernández de Dios, Araceli González del Campo, Francisco Jesús Fernández, Manuel Rodrigo, Marta Pazos, María Ángeles Sanromán, ‘Bioresource Technology Bacterial – Fungal Interactions Enhance Power Generation in Microbial Fuel Cells and Drive Dye Decolourisation by an Ex Situ and in Situ Electro-Fenton Process’, Bioresource Technology, 148 (2013), pp.39-46.
45.Lei Fu, Shi Jie You, Guo quan Zhang, Feng Lin Yanga, Xiao hong Fang, ‘Degradation of Azo Dyes Using in-Situ Fenton Reaction Incorporated into H2O2 -Producing Microbial Fuel Cell’, Chemical Engineering Journal, 160.1 (2010), pp.164-69.
46.Peng Hong, Liu Weiyi, Li Jiatian. Research on the decolorization of methyl red and bioelectricity generating capacity by a combined process, MFC and heterogeneous Fenton-like reaction, INDUSTRIAL WATER TREATMENT, (2015), pp.36-40.
47.Logan, B.E., Cheng, S., Watson, V., Estadt, G, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, (2007), pp.3341-3346.
48.Catal, T., Xu, S., Li, K., Bermek, H., Liu, H., Electricity production from polyalcohols in single-chamber microbial fuel cells. Biosens, Bioelectron. 24,(2008),pp.855-860.
49.Xing D, Zuo Y, Cheng S, Regan J M, Logan B E. Environmental Science & Technology, (2008), 42(11): pp.4146-4151.
50.Marc Sugnaux, BA, Fabian Fischer, PhD, Biofilm vivacity and destruction on antimicrobial nanosurfaces assayed within a microbial fuel cell, Nanomedicine: Nanotechnology, Biology and Medicine, Volume 12, Issue 6, (2016), pp.1471-1477.
51.Samaneh Shahgaldi, Mostafa Ghasemi, Wan Ramli Wan Daud, Zahira Yaakob, Mehdi Sedighi, Javed Alam, Ahmad Fuazi Ismail, Performance enhancement of microbial fuel cell by PVDF/Nafion nanofibre composite proton exchange membrane, Fuel Processing Technology, Volume 124,( 2014), pp.290-295.
52.Ghasemi, M.,Ismail, M.,Kamarudin, S.K. Saeedfar, K Daud, W.R.W., Hassan,S.H., Heng, L.Y.,Alam,J.,Oh,S.-E., Appl.Energy,102(2013), pp.1050-1056.
53.Ren, H., Pyo, S., Lee, J.I., Park, T.J., Gittleson, F.S., Leung, F.C., Kim, J., Taylor, A.D., Lee, H.S., Chae, J., J. Power Sources 273,(2015), pp.823-830.
54.Y. Yuan, J. Ahmed, S. Kim, ‘Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells’, Journal of Power Sources 196 (2011) , pp.1103-1106.
55.Xiaoshuang Yang Xiaoxiao Ma Kai Wang Di Wu, Zhenchao Lei Chunhua Feng, Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode, Electrochimica Acta, S0013-4686, (2016), pp.31317-2.
56.Amin Taheri Najafabadi and Norvin Ng, ‘Biosensors and Bioelectronics Electrochemically Exfoliated Graphene Anodes with Enhanced Biocurrent Production in Single-Chamber Air-Breathing Microbial Fuel Cells’, 81 (2016), pp.103-10.
57.Huan Wei , Xiao-Shuai Wu , Long Zou , Guo-Yun Wen, Ding-Yu Liu, Yan Qiao, ‘Amine-Terminated Ionic Liquid Functionalized Carbon Nanotubes for Enhanced Interfacial Electron Transfer of Shewanella Putrefaciens Anode in Microbial Fuel Cells’, Journal of Power Sources, 315 (2016), pp.192-98.
58.Yingwen Chen , Liuliu Chen , Peiwen Li , Yuan Xu , Mengjie Fan , Shemin Zhu , Shubao Shen, ‘Enhanced Performance of Microbial Fuel Cells by Using MnO2 / Halloysite Nanotubes to Modify Carbon Cloth Anodes’, Energy, 109 (2016), pp.620-28.
59.Xingwang Zhou , Xiaofen Chena, Hongying Lia, Juan Xionga, Xiaoping Li, Weishan Li, ‘Electrochimica Acta Surface Oxygen-Rich Titanium as Anode for High Performance Microbial Fuel Cell’, Electrochimica Acta, 209 (2016), pp.582-90 .
60.Nengwu Zhu , Xi Chen, Ting Zhang, Pingxiao Wua, Ping Li, Jinhua Wu, ‘Bioresource Technology Improved Performance of Membrane Free Single-Chamber Air-Cathode Microbial Fuel Cells with Nitric Acid and Ethylenediamine Surface Modified Activated Carbon Fiber Felt Anodes’, Bioresource Technology, 102.1 (2011), pp.422-26.
61.Qian Deng , Xinyang Li , Jiane. Zuo, Alison Ling, Bruce E. Logan, ‘Power Generation Using an Activated Carbon Fiber Felt Cathode in an Upflow Microbial Fuel Cell’, 195 (2010), pp.1130-35.
62.Igor Schmidt, Markus Langner and Andreas Greiner, ‘Environmental Science Microbial Fuel Cells and Related’,( 2015), pp.2048-55.
63.Jonathan Winfield, Iwona Gajda, John Greenman, Ioannis Ieropoulos, ‘Bioresource Technology A Review into the Use of Ceramics in Microbial Fuel Cells’, BIORESOURCE TECHNOLOGY, (2016), pp.1-8.
64.Thorne, R., Hu, H., Schneider, K., Bombelli, P., Fisher, A., Peter, L.M., Dent, A., Cameron, P.J., Porous ceramic anode materials for photo-microbial fuel cells. J. Mat. Chem. 21 (44) ,(2011), pp.18055-18060.
65.Diana Hidalgo, Tonia Tommasi, Valentina Cauda, Samuele Porro, Angelica Chiodoni, Katarzyna Bejtk, Bernardo Ruggeri, ‘Streamlining of Commercial Berl Saddles : A New Material to Improve the Performance of Microbial Fuel Cells’, Energy, 71 (2014), pp.615-23.
66.郭俊頡,利用RF濺鍍技術於室溫下將ITO成長在塑膠基板上之研究,國立中山大學,光電弧研究所,2005年6月。
67.F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, H. Matsui, M. Motoyama, ‘Low-Temperature Growth of Low-Resistivity Indium-Tin-Oxide Thin " Lms by Pulsed Laser Deposition’, 59 (2000), pp.641–48.
68.陳冠州,太陽電池之PVD濺鍍製程設備,工研院機械所 新興能源機械技術組,機電與工業管理文彙,2009年6月。
69.Josep Albero and Hermenegildo Garcia, ‘Journal of Molecular Catalysis A : Chemical Doped Graphenes in Catalysis’, ‘Journal of Molecular Catalysis. A, Chemical’, 408 (2015), pp.296–309.
70.Velram Balaji Mohan, Reuben Brown, Krishnan Jayaraman, Debes Bhattacharyya, ‘Characterisation of Reduced Graphene Oxide : Effects of Reduction Variables on Electrical Conductivity’, Materials Science & Engineering B, 193 (2015), pp.49–60.
71.蘇清源,石墨烯氧化物之特性與應用前景,物理專文,物理雙月刊33-2_145-256,(2011), pp.163-167.
72.Xuejun Zhou, Sheng Tang, Yan Yin, Shuihui Sun, Jinli Qiao, ‘Hierarchical Porous N-Doped Graphene Foams with Superior Oxygen Reduction Reactivity for Polymer Electrolyte Membrane Fuel Cells’, Applied Energy, 175 (2016), pp.459-67 .
73.G Gnana , C. Joseph Kirubaharan, Dong Jin Yoo, Ae Rhan Kim, ‘ScienceDirect Nanocomposite E An Efficient Oxygen Reduction Catalyst for the Continuous Electricity Production from Wastewater Treatment Microbial Fuel Cells’, International Journal of Hydrogen Energy, (2016), pp.1-12 .
74.NS material flexibility, Elmarco , http://www.elmarco.com.
75.Avinash Baji , Yiu Wing Mai, Shing Chung Wong, Mojtaba Abtahi, Pei Chen, ‘Electrospinning of Polymer Nanofibers : Effects on Oriented Morphology , Structures and Tensile Properties’, Composites Science and Technology, 70.5 (2010), pp. 703-18.
76.M. Ziabari, V. Mottaghitalab, A. K. Haghi, ‘APPLICATION OF DIRECT TRACKING METHOD FOR MEASURING ELECTROSPUN NANOFIBER DIAMETER’, Brazilian Journal of Chemical Engineering, 26.01 (2009), pp.53-62.
77.V. Salles, L. Seveyrat, T. Fiorido, L. Hu, J. Galineau, C. Eid, B. Guiffard, A. Brioude and D. Guyomar, ‘Synthesis and Characterization of Advanced Carbon- Based Nanowires – Study of Composites Actuation Capabilities Containing These Nanowires as Fillers.’, Nanowires - Recent Advances, (2012), pp.296-321.
78.不銹鋼針頭號數規格,鴻準企業股份有限公司,http://www.falcofes.com.
79.Donaldson Torit, Ultra-Web®, ‘Proprietary Technology Performs’. http://www2.donaldson.com/torit/en-us/pages/products/ultra-webmediatechnology.aspx.
80.Hsieh yu Li , Yun YangLee, Juin YihLai, Ying LingLiu, ‘Composite Membranes of Na Fi on and Poly ( Styrene Sulfonic Acid ) -Grafted Poly ( Vinylidene Fl Uoride ) Electrospun Nano Fi Ber Mats for Fuel Cells’, Journal of Membrane Science, 466 (2014), pp.238-45.
81.Matthew Brodt, Ryszard Wycisk, Peter Pintauro, Taehee Han, Nilesh Dale, Kevork Adjemian, ‘Nanofiber Fuel Cell Electrodes I. Fabrication and Performance with Commercial Pt/C Catalysts’, #1305, 224th ECS Meeting, © 2013 The Electrochemical Society.
82.Silas K Simotwo and Vibha Kalra, ‘Electrochimica Acta Study of Co-Electrospun Na Fi on and Polyaniline Nano Fi Bers as Potential Catalyst Support for Fuel Cell Electrodes’, Electrochimica Acta, 198 (2016), pp.156-64 .
83.K. Sasipriy, R. Suriyaprabh, P. Prabu, V. Rajendran, ‘Synthesis and Characterisation of Polymeric Nanofibers Poly ( Vinyl Alcohol ) and Poly ( Vinyl Alcohol )/ Silica Using Indigenous Electrospinning Set Up’, 16.4 (2013), pp.824-30 .
84.Rudolf Kraft. Graphene: The Stuff Dreams Are Made Of Once upon a time we though it was only good for pencil lead. WORLD OF ELECTRIC VEHICLES, (2011).
85.Biao Zhang, Feiyu Kang, Jean-Marie Tarascon, Jang-Kyo Kim, ‘Progress in Materials Science Recent Advances in Electrospun Carbon Nanofibers and Their Application in Electrochemical Energy Storage’, Progress in Materials Science, 76 (2016), pp.319-80.
86.Chunyu Yang , Sihao Chena, Jihu Wang, Tonghe Zhu, Gang Xua, Zhichang Chen, Xiaobiao Ma, Wenyao Li, ‘Applied Surface Science A Facile Electrospinning Method to Fabricate Polylactide / Graphene / MWCNTs Nanofiber Membrane for Tissues Scaffold’, Applied Surface Science, 362 (2016), pp.163-68 .
87.Xiang Zhang, Palaniswamy Suresh Kumar, Vanchiappan Aravindan, Hui Hui Liu, Jayaraman Sundaramurthy, Subodh G. Mhaisalkar, Hai Minh Duong, Seeram Ramakrishna, Srinivasan Madhavi, ‘Electrospun TiO2 − Graphene Composite Nano Fi Bers as a Highly Durable Insertion Anode for Lithium Ion Batteries’,(2012), pp.14780-14788.
88.H Fong, I Chun and D H Reneker, ‘Beaded Nanofibers Formed during Electrospinning’, 40 (1999), pp.4585-92.
89.Bo Wang, Zhimin Chen, Jianan Zhang, Jingjing Cao, Shuxia Wang,Qiuge Tian, Ming Gao, Qun Xu, ‘Colloids and Surfaces A : Physicochemical and Engineering Aspects Fabrication of PVA / Graphene Oxide / TiO2 Composite Nanofibers through Electrospinning and Interface Sol – Gel Reaction : Effect of Graphene Oxide on PVA Nanofibers and Growth of TiO2’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457 (2014), pp.318-25.
90.M. Cloupeau, Electrospray, Nanotechnology Solutions, 2013.
91.Lee, J. S., Choi, K. H., Do Ghim, H., Kim, S., Chun, D. H., Kim, H. Y., &Lyoo, W. S.Role of molecular weight of a tactic poly (vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning., Journal of Applied Polymer Science.94(4),(2004), pp.1638-1646.
92.Nicole E Zander, ‘Hierarchically Structured Electrospun Fibers’, (2013), pp.19-44 .
93.Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S. and Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer,43(16), (2002) , pp.4403-4412.
94.L I Zhaoxia, Pang Yuehong, Shen Xiaofang, Qian He, ‘Preparation Polystyrene / Graphene Composite Nanofibers’,(2012), pp.1-6.
95.Xin Jing, Hao-Yang Mi, Max R. Salick, Travis M. Cordie, Xiang-Fang Peng, Lih-Sheng Turng, ‘Electrospinning Thermoplastic Polyurethane / Graphene Oxide Scaffolds for Small Diameter Vascular Graft Applications’, Materials Science & Engineering C, 49 (2015), pp.40-50.
96.Nonni Soraya, Minjeong G Kim and Seung Bin, ‘The Formation of Web-like Connection among Electrospun Chitosan / PVA Fi Ber Network by the Reinforcement of Ellipsoidal Calcium Carbonate’, Materials Science & Engineering C, 60 (2016), pp.518-25.
97.Kwok D. Y., Neumann A.W., Contact angle interpretation in terms of solid surface tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects 161, (2000), pp.31-48.
98.Kwok D. Y., Neumann A. W., Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science 81, (1999), pp.167-249.
99.Jonathan M Schuster, Carlos E Schvezov and Mario R Rosenberger, ‘Influence of Experimental Variables on the Measure of Contact Angle in Metals Using the Sessile Drop Method’, Procedia Materials Science, 8.2009 (2015), pp.742-51 .
100.Van Zant, Peter. Microchip Fabrication. New York: McGraw-Hill. 2000, pp.431-2.
101.F.M. SMITS, Measurement of Sheet Resistivities with the Four-Point Probe,(1957), pp.712-718.
102.黃鎮江,燃料電池,滄海書局,台中,台灣,2008。
103.Sankha dip Das, Cyclic Voltammetry, Cyclic Voltammetry, Urrjaa, P011, (2013).
104.楊茹蘭、陳三元、林麗瓊、陳貴賢,以膠體法結合電泳法製備鉑釕二元合金奈米顆粒/奈米碳管/碳布於直接甲醇燃料電池中陽極甲醇電氧化的應用,國立交通大學材料科學工程學系,2006年7月。
105.Zhong-qing Jiang and Zhong-Jie Jiang, Carbon Nanotubes Supported Metal Nanoparticles for the Applications in Proton Exchange Membrane Fuel Cells (PEMFCs), INTECH, DOI: 10.5772/16565, (2011).
106.Reactive Black 5, Product Specification, Sigma Aldrich, http://www.sigmaaldrich.com.
107.Mayerhofer, Thomas G.; Mutschke, Harald; Popp, Jurgen. "Employing Theories Far beyond Their Limits—The Case of the (Boguer-) Beer–Lambert Law". ChemPhysChem,(2016), pp.1439-7641.
108.Jorge C Ramirez and Jorge Herrera-ordonez, ‘POLYMER Kinetic Aspects of Styrene Minisuspension Polymerization Using a Mixture PVA – SDS as Stabilizer : Effect of the Time of Addition of SDS’, 43 (2007), pp.3819-25.
109.K Andre Mkhoyan, Alexander W. Contryman, John Silcox, Derek A. Stewart, Goki Eda, Cecilia Mattevi, Steve Miller, Manish Chhowalla, ‘Atomic and Electronic Structure of Graphene-Oxide’, (2009), pp.17-21.
110.周亞洲、楊娟、孫磊、越南、程小農,石墨烯/銀複合薄膜的製備及表徵,無機化學學報,Vol.28, No.1, (2012), pp.137-142.。
111.Yudong Shang , Tiehu Li, Hao Li, Alei Dang, Li Zhang, Yuting Yin, Chuanyin Xiong, Tingkai Zhao, ‘Preparation and Characterization of Graphene Derived from Low- Temperature and Pressure Promoted Thermal Reduction’, Composites Part B, 99 (2016), pp.343-343.
112.石墨烯/奈米銀複合材料的製備、微結構及其導電性能,顧善群、李金煥、王海洋、鐘玲平、王堂洋、劉彬、肖軍,複合材料學報,Vol32, No.4,2015年8月。
113.Ling Ling Xia, Cai Lian Li and Yan Wang, ‘In-Situ Crosslinked PVA / Organosilica Hybrid Membranes for Pervaporation Separations’, Journal of Membrane Science, 498 (2016), pp.263-75.
114.Sudipta Chatterjee and Christine Campagne, ‘Marine Drugs’, (2014), pp.5801-16.
115.Swarnima Kashyap, Swadesh K Pratihar and Shantanu K Behera, ‘AC US CR’, Journal of Alloys and Compounds, (2016), pp.1-13 .
116.Thawatchai Phachamud, Manisara Phiriyawirut and April June, ‘Research Journal of Pharmaceutical , Biological and Chemical Sciences Physical Properties of Polyvinyl Alcohol Electrospun Fiber Mat’, 2.2, (2011), pp.675-84.
117.Farshad Barzegar , AbdulhakeemBello, Mopeli Fabiane, Saleh Khamlich, Damilola Momodu, Fatemeh Taghizadeh, Julien Dangbegnon,Ncholu Manyala, ‘Journal of Physics and Chemistry of Solids Preparation and Characterization of Poly ( Vinyl Alcohol )/ Graphene Nano Fi Bers Synthesized by Electrospinning’, Journal of Physical and Chemistry of Solids, 77 (2015), pp.139-45.
118.Hua-dong Huang, Peng-Gang Ren, Jun Chen, Wei-Qin Zhang, Xu Ji, Zhong-Ming Li, ‘High Barrier Graphene Oxide Nanosheet / Poly ( Vinyl Alcohol ) Nanocomposite Films’, 410 (2012), pp.156-63.
119.Filippo Pierini, Massimiliano Lanzi, Paweł Nakielski, Sylwia Pawłowska, Krzysztof Zembrzycki and Tomasz Aleksander Kowalewski, ‘Nanofibers : Effects of Graphene Oxide Reduction Electrospun Poly ( 3-Hexylthiophene )/ Poly ( Ethylene Oxide )/ Graphene Oxide Composite Nanofibers : Effects of Graphene Oxide Reduction’, (2016).
120.Gamal M Nasr , Ashraf S. Abd El Haleem, Anke Klingner, Adel M. Alnozahy, M.Hussein Mourad, ‘The DC Electrical Properties of Polyvinyl Alcohol / Multi-Walled Carbon Nanotube Composites’, 2.5 (2015), pp.884-89.
121.Yingze Song , Jinhong Yu, Lianghao Yu, Fakhr E. Alama,Wen Dai, Chaoyang Li, Nan Jiang, ‘Enhancing the Thermal , Electrical , and Mechanical Properties of Silicone Rubber by Addition of Graphene Nanoplatelets’, JMADE, 88 (2015), pp.950-57.
122.Luiz H S Gasparotto , Eduardo G. Ciapina, Edson A. Ticianelli, Germano Tremiliosi-Filho, ‘Electrodeposition of PVA-Protected PtCo Electrocatalysts for the Oxygen Reduction Reaction in H2SO4’, Journal of Power Sources, 197 (2012), pp.97-101.
123.Hyunju Lee, Jae Ho Lee, Yoon Hwae Hwang, Yangdo Kim, ‘Cyclic Voltammetry Study of Electrodeposition of CuGaSe 2 Thin Fi Lms on ITO-Glass Substrates’, 14 (2014), pp.18-22.
124.Andrey N Aleshin, Pavel S. Krylov, Alexander S. Berestennikov, Igor P. Shcherbakov,Vasily N. Petrov, Veniamin V. Kondratiev, Svetlana N. Eliseeva, ‘The Redox Nature of the Resistive Switching in Nanocomposite Thin Fi Lms Based on Graphene ( Graphene Oxide ) Nanoparticles and Poly’, Synthetic Metals, 217 (2016), pp.7-13.
125.Huiqin Zheng, Chin Yong Neo and Jianyong Ouyang, ‘Highly E Ffi Cient Iodide / Triiodide Dye-Sensitized Solar Cells with Gel- Coated Reduce Graphene Oxide / Single-Walled Carbon Nanotube Composites as the Counter Electrode Exhibiting an Open-Circuit Voltage of 0.90 V’, (2013), pp.6657-6664.
126.C M Wu, S A Yu and S L Lin, ‘Graphene Modified Electrospun Poly ( Vinyl Alcohol ) Nanofibrous Membranes for Glucose Oxidase Immobilization’, 8.8 (2014), pp.565-73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top