跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 17:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳瑞泰
研究生(外文):WU, JUI-TAI
論文名稱:碳氮、硫氮改質銦鈦複合材料製備及光催化特性研究
論文名稱(外文):Preparation of C, N and S, N co-doped Indium Titanium Composites and the Evaluation of Photocatalytic Properties
指導教授:吳忠信吳忠信引用關係
指導教授(外文):WU, CHUNG-HSIN
口試委員:王志逢何宗漢黃小林陳勝一胡慶祥
口試委員(外文):WANG, CHIH-FENGHO, TSUNG-HANHUANG, HSIAO-LINCHEN, SHEN-YIHWU, CHING-SHYUNG
口試日期:2017-06-16
學位類別:博士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:二氧化鈦氧化銦碳氮共摻雜硫氮共摻雜光降解L-半胱氨酸
外文關鍵詞:TiO2In2O3C-N co-dopingS-N co-dopingPhotodegradationL-cysteine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鈦 (TiO2)為良好之光催化材料,對工業廢水中之染料有光降解作用,而在TiO2中摻雜氧化銦 (In2O3)形成之二氧化鈦-氧化銦 (TiO2-In2O3, Ti-In) 複合材料,可縮小TiO2能隙提高光催化活性。故本研究利用溶膠-凝膠法製備Ti-In複合材料,Ti-In再分別與碳-氮 (C-N)和硫-氮 (S-N)共摻雜以形成新之Ti-In-C-N和Ti-In-S-N複合觸媒,希望提高Ti-In光降解之效率。TiO2與In2O3的前驅物分別是四氯化鈦及氯化銦,C、N和S摻雜劑之來源分別是粉末活性碳、尿素和硫代硫酸鈉,一步驟進行SN改質則以L-半胱胺酸為前驅物。本研究製備Ti-In-S-N複合觸媒時需兩個步驟,先製備出Ti-In-S再與尿素合成Ti-In-S-N;另本研究以一個步驟改質Ti-In為Ti-In-SN,以比較Ti-In-S-N及Ti-In-SN之光催化活性。
由XRD分析顯示,Ti-In-SN、Ti-In-S-N與Ti-In-C-N之Anatase晶相比例分別為100%、64%和63%,均高於Ti-In之30%;Ti-In-C-N、Ti-In-S-N及Ti-In-SN複合觸媒之顆粒直徑分別為33 nm、33 nm及13 nm,均小於Ti-In 之57 nm;Ti-In、Ti-In-C-N、Ti-In-S-N及Ti-In-SN之能隙值分別為2.97 eV、2.86 eV、2.82 eV與2.75 eV,以C-N、S-N和SN共摻雜Ti-In均達到降低Ti-In能隙之目的。Ti-In-C-N、Ti-In-S-N和Ti-In-SN之SEM圖像均呈現高凝聚傾向且具有多孔結構和片狀結構,TEM圖像顯示Ti-In-C-N、Ti-In-S-N和Ti-In-SN之顆粒尺寸分別為25-50 nm、20-50 nm和15-80 nm;XPS分析顯示,Ti-In-C-N具有Ti-O-N,Ti-N-O和Ti-O-C之鍵結,在Ti-In-S-N中發現Ti-O-N、Ti-N-O和Ti-O-S鍵結,在Ti-In-SN證實有Ti-N-O、Ti-O-N和Ti-O-S鍵結形成。BET分析Ti-In、Ti-In-C-N、Ti-In-S-N及Ti-In-SN之比表面積,其值分別為35.7、35.6、42.3及48.6 m2/g。
本研究以染料C.I. Reactive red 2 (RR2)作為目標污染物,在光催化反應中比較各觸媒之光催化活性,光催化實驗使用254 nm紫外燈為光源,在pH 3及25 ℃下測試,UV/Ti-In、UV/Ti-In-C-N、UV/Ti-In-S-N和UV/Ti-In-SN中光催化降解反應均遵循擬一階動力式,去除RR2之擬一階反應速率常數分別為0.43、1.68、1.70及0.68 h-1。UV/Ti-In,UV/Ti-In-C-N和UV/Ti-In-S-N中RR2之比攝氧率分別為4.4、7.3及5.3 mg O2/g-MLVSS-h。本研究發現Ti-In共摻雜後所得之Ti-In-C-N、Ti-In-S-N和Ti-In-SN複合觸媒之光活性均較Ti-In為高,且處理後出流水之毒性較低,兩步驟合成之Ti-In-S-N光催化活性雖高於一步驟合成之Ti-In-SN,但合成過程相對耗時。

TiO2 is a good photocatalyst and plays a role in the photodegradation of dyes in industrial wastewater. When TiO2 is doped with In2O3, a TiO2-In2O3 (Ti-In) composite material is formed, which can decrease the band gap in TiO2 and increase its photocatalytic activity. This study employed the sol-gel method to prepare Ti-In composite materials. Ti-In was then co-doped with carbon-nitrogen (C-N) and sulfur-nitrogen (S-N) to form new Ti-In-C-N and Ti-In-S-N composite catalysts, respectively, with the aim of increasing the photocatalytic efficiency of Ti-In. The precursors of TiO2 and In2O3 were titanium tetrachloride and indium chloride, respectively. The sources of the C, N, and S dopants were activated carbon powder, urea, and sodium thiosulfate, respectively. L-cysteine was used as a precursor for the modification of SN. The study employed a 2-step process to prepare the Ti-In-S-N composite catalysts. The first step was to prepare the Ti-In-S, before the Ti-In-S-N was synthesized with urea. During the preparation of the Ti-In-SN catalyst by doping L-cysteine, the Ti-In was modified to Ti-In-SN, in order to compare the photocatalytic activity of the two catalysts (Ti-In-S-N and Ti-In-SN).
XRD analysis showed that the anatase crystalline phase ratios in Ti-In-SN, Ti-In-S-N, and Ti-In-C-N were 100 %, 64 %, and 63 %, respectively; they were all higher than Ti-In (30 %). The particle sizes of Ti-In-C-N, Ti-In-S-N, and Ti-In-SN were 33, 33, and 13 nm, respectively, all lower than Ti-In (57 nm). The band gap values of Ti-In, Ti-In-C-N, Ti-In-S-N, and Ti-In-SN were 2.97, 2.86, 2.82, and 2.75 eV, respectively, showing that co-doping Ti-In with C-N, S-N, and SN achieved the aim of decreasing the band gap of Ti-In. SEM images of Ti-In-C-N, Ti-In-S-N, and Ti-In-SN all showed a high tendency to agglomerate and all have a lamellar porous structure. TEM images showed that the particle dimensions of Ti-In-C-N, Ti-In-S-N, and Ti-In-SN were 25-50 nm, 20-50 nm, and 15-80 nm, respectively. The XPS analysis showed that Ti-In-C-N contains Ti-O-N, Ti-N-O, and Ti-O-C bonds; Ti-In-S-N contains Ti-O-N, Ti-N-O, and Ti-O-S bonds; and Ti-In-SN was verified to be formed Ti-N-O, Ti-O-N, and Ti-O-S bonds. A Brunauer-Emmett-Teller (BET) analysis was used to quantitate the specific surface areas of Ti-In, Ti-In-C-N, Ti-In-S-N, and Ti-In-SN. The resulting values were 35.7, 35.6, 42.3, and 48.6 m2/g, respectively.
C.I. Reactive red 2 (RR2) was used as a target pollutant for photocatalysis reactions to compare the photocatalytic activity of various catalysts. A 254 nm UV lamp was used as a light source and the experiment was carried out at pH 3 and 25 °C. The photodegradation reactions of the prepared Ti-In, Ti-In-C-N, Ti-In-S-N, and Ti-In-SN composite catalysts were observed to obey pseudo-first-order kinetics, with rate constants of 0.43, 1.68, 1.70, and 0.68 h-1, respectively. The specific oxygen uptake rates of RR2 photodegradation were 4.4, 7.3, and 5.3 mg O2/g-MLVSS-h, respectively. The results showed that the photoactivity of the Ti-In-C-N, Ti-In-S-N, and Ti-In-SN composite catalysts, obtained from the co-doping of Ti-In, were all higher than Ti-In, and the toxicities of the treated effluent were all lower than Ti-In. Although the photocatalytic activity of Ti-In-S-N based on a two-step synthesis was higher than Ti-In-SN, the synthesis process was relatively time-consuming.

中文摘要
ABSTRACT
致 謝
目 錄
表目錄
圖目錄
第一章、緒論
1-1研究動機
1-2研究目的
第二章、文獻回顧
2-1廢水處理簡介
2-2 高級氧化程序
2-2-1 臭氧氧化
2-2-2 過氧化氫氧化
2-2-3 Fenton 法
2-2-4 異相光催化
2-2-5 濕式氧化
2-3金屬氧化物半導體光催化
2-3-1 二氧化鈦 (TiO2)及氧化銦 (In2O3)
2-3-2 TiO2摻雜In2O3 (TiO2-In2O3, Ti-In)
2-3-3 Ti-In表面改質
第三章、實驗方法
3-1研究架構
3-2實驗藥品與儀器
3-3 偶氮染料
3-4觸媒合成
3-4-1 銦鈦複合觸媒之製備
3-4-2 硫改質銦鈦複合觸媒之製備
3-4-3 氮改質銦鈦複合觸媒之製備
3-3-4 碳氮共存改質鈦銦複合觸媒
3-4-5 硫氮共存改質鈦銦複合觸媒
3-4-6 L-半胱胺酸一步驟改質銦鈦複合觸媒
3-5觸媒表面特性分析
3-5-1 X光繞射光譜
3-5-2 掃描式電子顯微鏡
3-5-3 穿透式電子顯微鏡
3-5-4 比表面積分析儀 (BET)
3-5-5 X射線光電子能譜
3-5-6 紫外-可見光光譜儀 (分光光度計)
3-6 光催化降解實驗
3-7 比攝氧率試驗
3-8 混合液揮發性固體含量測定
3-9 反應動力學模擬
第四章、結果與討論
4-1 觸媒表面特性鑑定
4-1-1 XRD圖譜分析
4-1-2 SEM與TEM 圖像分析
4-1-3 XPS圖譜分析
4-2 觸媒光催化活性比較
4-2-1 Ti-In、Ti-In-C-N和Ti-In-S-N之光催化活性比較
4-2-2 Ti-In、Ti-In-S、Ti-In-N和Ti-In-SN之吸附及光催化活性比較
第五章、結論與建議
5-1 結論
5-2 建議
參考文獻
已發表論文目錄


Alfano OM, Brandi RJ, Cassano AE (2001) Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation. Chem. Eng. J. 82:209-218

Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53:51-59

Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogendoped titanium oxides. Science 293:269-271

Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res. 18:1501-1507

Chakraborty AK, Rhaman MM, Hossain ME, Sobahan KMA (2014) Preparation of WO3/TiO2/In2O3 composite structures and their enhanced photocatalytic activity under visible light irradiation. Reac. Kinet. Mech. Cat. 111:371-382

Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind. Eng. Chem. Res. 46:2741-2746

Cheng M, Zeng G,Huang D, Lai C, Xu P, Zhang C, Liu Y (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds:A review Chem. Eng. J. 284:582-598

Cheng X, Liu H, Chen Q, Li J, Wang P (2013) Construction of N, S codoped TiO2 NCs decorated TiO2 nanotube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta 103:134-142

Cho YS, Huh YD (2010) Controlled-synthesis and photocatalytic properties of h-In2O3 and c-In2O3. Bull. Korean Chem. Soc. 31:1769-1772.

Choi W, Termin A, Hoffmann MR (1994) The role of metal-ion dopants in quantum-sized TiO2 : Correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98:13669-13679

Dong L, Guo S, Zhu S, Xu D, Zhang L, Huo M, Yang X (2011) Sunlight responsive BiVO4 photocatalyst: Effects of pH on L-cysteine-assisted hydrothermal treatment and enhanced degradation of ofloxacin. Catal. Commun. 16:250-254

Eshaghi A, Pakshir M, Mozaffarinia R (2010) Preparation and photo-induced superhydrophilicity of composite TiO2-SiO2-In2O3 thin film. Appl. Surf. Sci. 256:7062-7066

Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37-38

Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 9:335-352

Gyorgy E, Pino AP, Serra P, Morenza JL (2003) Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surf. Coat. Technol. 173:265-270

Ho W, Yu JC, Lee S (2006) Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem. 179:1171-1176

Ho YS, McKay G (1988) Sorption of dye from aqueous solution by pit. Chem. Eng. J. 70:115-124

Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107:4545-4549

Ismail IM, Abdallah B, Abou-Kharroub M, Mrad O (2012) XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge. Nucl. Instrum. Method Phys. Res. B 271:102-106

Kang IC, Zhang Q, Yin S, Sato T, Saito F (2008) Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment. Appl. Catal. B 80:81-87

Klug P, Alexander LE (1974) X-ray diffraction procedures. Wiley, New York

Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A Review. Appl. Catal. B 49:1-14

Kuo CY, Wu CH, Chen ST (2014) Decolorization of C.I. reactive red 2 by UV/TiO2/PAC and visible-light/TiO2/PAC systems. Desalin. Water Treat. 52:834-843

Le HA, Linh LT, Chin S, Jurng J (2012) Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon. Powder Technol. 225:167-175

Lee DK, Cho JS, Yu TJ, Lee YS, Choe JW, Lee SS (2016) Kinetic modeling and dynamic simulation for the catalytic wet air oxidation of aqueous ammonia to molecular nitrogen. Korean J. Chem. Eng. 33:3109-3114

Li C, Ming T, Wang J, Wang J, Yu JC, Yu SH (2014) Ultrasonic aerosol spray-assisted preparation of TiO2/In2O3 composite for visible-light-driven photocatalysis. J. Catal. 310:84-90

Li X, Xiong R, Wei G (2008) S-N co-doped TiO2 photocatalysts with visible-light activity prepared by sol-gel method. Catal. Lett. 125:104-109

Li Y, Zhang S, Yu Q, Yin W (2007) The effects of activated carbon supports on the structure and properties of TiO2 nanoparticles prepared by a sol-gel method. Appl. Surf. Sci. 253:9254-9258

Lin CF, Wu CH, Onn SN (2008) Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. J. Hazard. Mater. 154:1033-1039

Liu SY, Tang QL, Feng QG (2011) Synthesis of S/Cr doped mesoporous TiO2 with high active visible light degradation property via solid state reaction route. Appl. Surf. Sci. 257:5544-5551

Lo SC, Lin CF, Wu CH, Hsieh PH (2004) Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol. J. Hazard. Mater. 114:183-190

Lu X, Tian B, Chen F, Zhang J (2010) Preparation of boron-doped TiO2 films by autoclaved-sol method at low temperature and study on their photocatalytic activity. Thin Solid Films 519:111-116

Lv K, Hu J, Li X, Li M (2012) Cysteine modified anatase TiO2 hollow microspheres with enhanced visible-lightdriven photocatalytic activity. J. Mol. Catal. A: Chem. 356:78-84

Ma F, Zhang S, Yang X, Guo W, Guo Y, Huo M (2012) Fabrication of metallic platinum and indium oxide codoped titania nanotubes for the simulated sunlight photocatalytic degradation of diethyl phthalate. Catal. Commun. 24:75-79

Min Y, Zhang K, Zhao W, Zheng F, Chen Y, Zhang Y (2012) Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene bule. Chem. Eng. J. 193-194:203-210

Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. B 98:3-50

Ni M, Leung KH, Leung YC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energ. Rev. 11:401-425

Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A 265:115-121

Ou XH, Wu CH, Lo SL (2006) Photodegradation of 4-chlorophenol by UV/photocatalysts: the effect of the interparticle electron transfer process. React. Kinet. Catal. Lett. 88:89-95

Rengifo-Herrera JA, Mielczarski E, Mielczarski J, Castillo NC, Kiwi J, Pulgarin C (2008) Escherichia coli inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl. Catal. B 84:448-456

Rengifo-Herrera JA, Pulgarin C (2010) Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation. Sol. Energy 84:37-43.

Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira, ME, Cab C, Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605-145614

Reyes-Gil KR, Reyes-Garcia EA, Raftery D (2007) Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 111:14579-14588

Saha NC, Tompkins HG (1992) Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72:3072-3079

Sasikala R, Shirole AR, Sudarsan V, Jagannath SC, Naik R, Rao R, Bharadwaj SR (2010) Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2-Pd nanocomposites for hydrogen generation. Appl. Catal. A 377:47-54

Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 300:254–263.

So CM, Cheng MY, Yu JC and Wong PK(2002) Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation. Chemosphere 46:905–912

Sojic DV, Despotovic VN, Abazovic ND, Comor MI, Abramovic BF (2010) Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. J. Hazard. Mater. 179:49-56

Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29:760-762

Tominaga M, Hirata N, Taniguchi I (2005) UV-ozone dry-cleaning process for indium oxide electrodes for protein electrochemistry. Electrochem. Commun. 7:1423-1428

Tseng TT, Uan JY, Tseng WJ (2011) Synthesis, microstructure, and photocatalysis of In2O3 hollow particles. Ceram. Int. 37:1775-1780

Umebayashi T, Yamaki T, Yamamoto S, Miyashita A, Tanaka S, Sumita T, Asai K (2003) Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. J. Appl. Phys. 93:5156-5160

Wang P, Yap PS, Lim TT (2011) C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl. Catal. A 399:252-261

Wang X, Hu Z, Chen Y, Zhao G, Liu Y, Wen Z (2009b) A novel approach towards high performance composite photocatalyst of TiO2 deposited on activated carbon. Appl. Surf. Sci. 255:3953-3958

Wang WD, Huang FQ, Liu CM, Lin XP, Shi JL (2007) Preparation, electronic structure and photocatalytic activity of the In2TiO5 photocatalyst. Mater. Sci. Eng. B 139:74-80

Wang X, Lim TT (2011) Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: evaluation of photocatalytic mechanism and solution toxicity. Appl. Catal. A-Gen. 399:233-241

Wang Y, Huang Y, Ho W, Zhang L, Zou Z, Lee S (2009a) Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. J. Hazard. Mater. 169:77-87

Wu CH (2004) Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems. Chemosphere 57:601-608

Wu CH, Chang CL, and Kuo CY (2008) Decolorization of Procion Red MX-5B in electrocoagulation (EC),UV/TiO2 and ozone-related systems. Dyes Pigments 76: 187-194

Wu CH, Kuo CY, Chen ST (2013) Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation. Environ. Technol. 34:2513-2519

Wu CH, Kuo CY, Lai CH, Chung WY (2014) Surface characteristics and photocatalytic properties of TiO2-In2O3 composite powders by using the sol-gel method: effects of preparation conditions. Reac. Kinet. Mech. Cat. 112:543-557

Wu CH, Kuo CY, UWu JT,U Hong PKA, Lai CH, Chung WY (2015) Effects of nitrogen and carbon dopings on properties and photocatalytic activity of TiO2-In2O3 composite. Korean J. Chem. Eng. 32:860-866

Xiao Q, Ouyang L (2009) Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: Effect of calcination temperature. Chem. Eng. J. 148:248-253

Yang X, Wang Y, Xu L, Yu X, Guo Y (2008) Silver and indium oxide codoped TiO2 nanocomposites with enhanced photocatalytic activity. J. Phys. Chem. C 112:11481-11489

Yu J, Zhou M, Cheng B, Zhao X (2006) Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders. J. Mol. Catal. A 246:176-184

Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ. Sci. Technol. 39:1175-1179

Zhang Z, Wang X, Long J, Gu Q, Ding Z, Fu X (2010) Nitrogen-doped titanium dioxide visible light photocatalyst:Spectroscopic identification of photoactive centers. J. Catal. 276:201-214

Zheng J, Liu Z, Liu X, Yan X, Li D, Chua W (2011) Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photo-catalytic activity. J. Alloy. Compd. 509:3771-3776

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊