中文部份
任書鳴(2007)。應用資料探勘技術於排課系統之研究。靜宜大學資訊管理學系研究所碩士論文,未出版,台中。吳仲銘(2007)。基因演算法與單體法於PID參數最佳化調整之應用。國立台灣海洋大學機械與機電工程學系研究所碩士論文,未出版,台北。李杰濃(2005)。以樣式技術為基礎之大學排課黑板系統。大葉大學資訊工程學系碩士論文,未出版,彰化。周明、孫樹棟(2005)。遺傳算法原理及應用,五版。國防工業出版社,北京。
林明德、林師檀(1999)。禁忌搜尋法與遺傳演算法混合模式在地下水復育優選問題之應用。第十六屆環境規劃與管理研討會。
林誌銘(2009)。應用基因演算法於捷運列車運行計劃之研究。國立交通大學運輸科技與管理學系博士論文,未出版,新竹。邱元泰(2002)。遺傳演算法在排課問題之應用。國立中正大學數學研究所碩士論,未出版,嘉義。唐學明(1996)。軍事院校電腦排課問題之探討。復興崗學報,第59期,頁129-155。
翁得榮(2007)。排課問題之研究-以高雄第一科技大學運籌管理系為例。國立高雄第一科技大學運籌管理所碩士論文,未出版,高雄。張良安(2004)。運用基因演算法建置大專院校之排課系統。育達商業技術學院資訊管理研究所碩士論文,未出版,台北。許武義(1999)。網頁式排課管理系統。暨南國際大學資訊管理學系研究所碩士論文,未出版,南投。陳木松、廖鴻翰(1998)。適應性突變運算及其運用。大葉學報,第7卷第1 期,頁91-101。陳奕憲(2011)。基因演算法在國民中學排課問題之最佳化研究。南華大學資訊管理學系研究所碩士論文,未出版,台中。陳盈樺(2007)。基因演算法於多目標全球成衣報價之應用。國立台中技術學院事業經營研究所碩士論文,未出版,台中。楊迺聲(2005)。軍事院校班隊排課最佳化之研究。國立中央大學土木工程學系碩士在職專班研究所碩士論文,未出版,中壢。廖時興(2012)。軍事院校多班隊多班次排課最佳化之研究。真理大學企業管理學系研究所碩士論文,未出版,台北。廖聖揚(2005)。應用限制規劃方法求解軍事院校排課問題。國立高雄第一科技大學資訊管理所碩士論文,未出版,高雄。蔡宇宗(2008)。運用模糊理論於排課預處理作業-以遠東科技大學資管系為例。樹德科技大學資訊工程學系研究所碩士論文,未出版,高雄。鄭惟中(2003)。電腦自動化排課系統之研究。逢甲大學工業工程學研究所碩士論文,未出版,台中。關銘(2004)。以OWL DL 及SWRL 為基礎建置推論雛形系統- 以大學排課問題為例。中原大學資訊管理研究所碩士論文,未出版,中壢。蘇木春、張孝德(2002)。機器學習:類神經網路、模糊系統以及基因演算法則。全華科技出版社,台北。
外文部份
Aderemi, O. A., Sawyerr, B. A., Montaz, M. A. (2009). A heuristic solution to the university timetabling problem. Engineering Computations, 26(8), 972-984.
Adler, D. (1993). Genetic algorithms and simulated annealing: a marriage proposal. IEEE International Conference on Neural Networks, 2, 1104-1109.
Bagley, J. D. (1967). The behavior of adaptive systems which employ genetic and correlation algorithms. Dissertation Abstracts International Journal, 28(12), 125-139.
Beligiannis, G. N., Moschopoulos, C. & Likothanassis, S. D. (2009). A genetic algorithm approach to school timetabling. Journal of the Operational Research Society, 60(1), 23-42.
Burke, E., Yuri, B., Newall, J., & Sanja, P. (2004). A time-predefined local search approach to exam timetabling problems. IIE Transactions. 36(6), 509-528.
Burke, E. K., & Newall, J. P. (2004). Solving examination timetabling problems through adaption of heuristic orderings. Annals of Operations Research, 129, 107-134.
Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140(2), 266-280.
Burke, E. K., Pham, Nam., Rong, Q., & Yellen, J. (2012). Linear combinations of heuristics for examination timetabling. Annals of Operations Research, 194(1), 89-109.
Carter, M. W., & Laporte, Gilbert. (1998). Recent developments in practical course timetabling. European Journal of Operational Research, 140(2), 266-280.
Chang, K. H. (2012). Stochastic Nelder-Mead simplex method-A new globally convergent direct search method for simulation optimization. European Journal of Operational Research, 220(3), 684-694.
Chang, P. T., Lin, C. S., Hung, K. C., Lee, H. H., & Chang, C. H. (2010). Collaboration and Competition Process: A Multi-Teams and Genetic Algorithm Hybrid Approach. International Journal of Artificial Life Research, 1(3), 61-89.
Cook, D. F., Ragsdale, C. T., & Major, R. L. (2000). Combining a neural network with a genetic algorithm for process parameter optimization. Engineering Applications of Artificial Intelligence, 13(4), 391-396.
Cooper, T. B., & Kingston, J. H. (1996). The complexity of timetabling construction problems. Computer Science, 1153, 281-295.
De Jong, K. A. (1975). Analysis of the behavior of a class of genetic adaptive systems. The University of Michigan, Ann Arbor, MI.
Enzhe, Yu., & Sung, K. S. (2002). A genetic algorithm for a university weekly courses timetabling problem. International Transcations in Operational Research. 9(6), 703-717.
Even, S., Itai, A., & Shamir, A., (1976). On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing, 5(4), 691-703.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Mass: Addison, Wesley.
Goerigk, M., & Schobel, A., (2011). Engineering the modulo network simplex heuristic for the periodic timetabling problem. Artificial Intelligence and Lecture Notes in Bioinformatics, 6630, 181-192.
Grefenstette, J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions of Systems, Man & Cybernetics, 16(1), 122-128.
Holland, J. H. (1962). Adaptation in natural and artificial system. Cambridge, USA, MA: MIT Press.
Horst A, Eiselt., & Laporte, G. (1987). Combinatorial optimization problems with soft and hard requirements. Journal of the Operational Research Society, 38, 785-795.
Huntley, C. L., Donald, E. B., & Andrew, R. S. (1989). A parallel genetic heuristics for the quadratic assignment problem. Paper presented at the meeting of Proceedings of the Third International Conference on Genetic Algorithms, 406-515.
Jeong, K., & Lee, J. J. (1996). Adaptive simulated annealing genetic algorithm for system identification. Engineering Applications of Artifical Intelligence, 9(5), 523-532.
Liao, Y. J., Bogju, L., & Randolph, D. (1998). A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method. Journals & Magazines, 28(2), 173-191.
Liaw, C. F. (2000). A hybrid genetic algorithm for open shop scheduling problem. European Journal of Operational Research, 124(1), 28-42.
Lin, H., & Yamashita, K., (2000). Hybrid simplex genetic algorithm for blind equalization using RBF networks. Mathematics and Computers in Simulation, 59(4), 293-304.
Lindfied, G. & Penny, J. (2000). Numerical methods using matlab. (2nd ed.). Prentice Hall.
Mirrazavi, S. K., Mardle, S. J., & Tamiz, M. (2003). A two-phase multiple objective approach to university timetabling utilising optimization and evolutionary solution methodologies. Operational Research Society, 54(11), 1155-1166.
Mooney, E. L., Rardin, R. L., & Parmenter, W. J. (1995). Large-scale classroom scheduling. IIE Transactions, 1(28), 369-378.
Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Genetic Algorithms for Flowshop Scheduling Problems. Computers and Industrial Engineering, 30(4), 1061-1071.
Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7(4), 308-313.
Nguyen, D. T. (2007). Solving timetabling problem using genetic and heuristic algorithms. Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/ Distributed Computing, Nong Lam Univ, Ho Chi Minh City. 3, 472-477
Pearl, J. (1984). Heuristic:Intelligent search strategies for computer problem solving. Boston, MA, Addison-Wesley.
Prashant, P. B., Sudhir, R. B., & Vijay, S. K. (2010). Optimum coordination of overcurrent relay timing using simplex method. Electric Power Components and systems, 38(10), 1175-1193.
Rao, S. S. (1996). Engineering optimization-Theory and Practice (3ed.). John Wiley & Sons, Interscience Publication.
Renders, J. M., & Bersini, H., (1994). Hybridizing genetic a hill-climbing methods for global optimization: Two possible ways. Proceedings of the 1st IEEE Conference on Evolutionary Computation Intelligence, Orlando, 312-317.
Sabar, N. R., Ayob, M., Kendall, G., Rong, Q., (2012). A honey-bee mating optimization algorithm for educational timetabling problems. European Journal of Operational Research, 216(3) 533-543.
Sadaf, N. J. & Shengxiang, Y. (2011). A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling. Journal of Scheduling, 14(6), 617-637.
Schaerf, A. (1995). A survey of automated timetabling. Artificial Intelligence Review, 127.
Shengxiang, Y., & Jat, S. N. (2011). Genetic algorithms with guided and local search strategies for university course timetabling. IEEE Transactions on systems, man, and Cybernetics—part C: Applications and reviews. 41(1), 93-106.
Sirag, D. J., & Weisser, P. T. (1987). Toward a unified thermodynamic genetic operator. Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their appliction, 116-122.
Slim. A., & Michael, M. (2000). University course timetabling using constratint handling rules. Journal of Applied Artificial Intelligence. 14, 311-325.
Spendley, W., Hext, G. R., & Himsworth, F. R. (1962). Sequential application of simplex designs in optimization and evolutionary operation. Technometrics, 4(4), 441-461.
Ting,C. K., Li, S.T., & Lee, C. N. (2001). TGA: A New Integrated Approachto Evolutionary Algorithms. Congress on Evlutionary Computation (ECE2001), 2, 917-924.
Vesin, J. M., & Gruter, R. (1999). Model selection using a simplex reproduction genetic algorithm. Signal Processing, 78(26), 321-327.
Victor, A. B. (1996). Computer-aided school and university timetabling: The new wave. Computer Science, 1153, 22-45.
Wayne, S. (2005). Applying data mining to scheduling courses at a university. Communications of the Association for Information Systems, 16, 463-474.
Wren, A. (1996). Scheduling, timetabling and rostering:a special relationship? Computer Science, 1153, 46-75.
Wu, C. Y., & C. H. Shu. (1996). Topological optimization of two-dimensional structure using genetic algorithms and adaptive resonance theory. Tatung Journal, 26, 213-224.
Yen, J., & Bogju, L., (1997). A simplex genetic algorithm hybrid. IEEE International Conference on Evolutionary Computation, 175-180.
Zahra, N. A. (2005). Hybrid heuristics for Examination Timetabling problem. Applied Mathematics and Computation. 163(2), 705-733.