|
[1] N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling,” in Proc. VLSI Technology Symp., 1999, pp. 73–74. [2] R. Achenbach, M. Feuerstack-Raible, F. Hiller, M. Keller, K. Meier, H. Rudolph, and R. Saur-Brosch, “A digitally-compensated crystal oscillator,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1502-1506, Oct. 2000. [3] P. Krummenacher and H. Oguey, “Smart temperature sensor in CMOS technology,” Sens. Actuat., vol. A21, pp. 636–638, 1990. [4] A. Bakker, “CMOS smart temperature sensor - an overview,” in Proc. IEEE Sensors, vol. 2, Jun. 2002, pp. 1423–1427. [5] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 933–937, Jul. 1996. [6] M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-�慆 CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1117–1122, Jul. 1998. [7] A. Bakker and J. H. Huijsing, “A low-cost high-accuracy CMOS smart temperature sensor,” in Proc. ESSCIRC, Sep. 1999, pp. 302–305. [8] M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, “A high-accury temperature sensor with second-order curvature correction and digital bus interface,” in Proc. ISCAS, vol. 1, May 2001, pp. 368–371. [9] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Juijsing, “A CMOS smart temperature sensor with a 3�� inaccuracy of ±0.1 °C from -55 °C to 125 °C,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005. [10] V. Székely, Cs. Márta, Zs. Kohári, and M. Rencz, “CMOS sensors for online thermal monitoring of VLSI circuits,” IEEE Trans. VLSI Syst., vol. 5, no. 3, pp. 270–276, 1997. [11] M. Sasaki, M. Ikeda, and K. Asada, “−1/+0.8 °C error, accurate temperature sensor using 90nm 1V CMOS for on-line thermal monitoring of VLSI circuits,” ICMTS ‘06, Mar. 2006. [12] G. M. Quenot, N. Paris, and B. Zavidovique, “A temperature and voltage measurement cell for VLSI Circuits,” in Proc. Euro-ASIC, 1991. [13] K. Arabi, and B. Kaminska, “Built-in temperature sensors for on-line thermal monitoring of microelectronic structures,” in Proc. ICCD, 1997. [14] P. Chen, C. Chen, C. Tsai, and W. Lu, “A time-to-digital-converter-based CMOS smart temperature sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642−1648, Aug. 2005 [15] R. Gregorian and G. C. Temes, Analog MOS Integrated Circuits for Signal Processing. New York: Wiley, 1986. [16] Y. P. Tsividis, Operation and Modeling of the MOS Transistor. New York: McGraw-Hill, 1987. [17] K. R. Laker andW. M. C. Sansen, Design of Analog Integrated Circuits and Systems. New York: McGraw-Hill, 1994. [18] Q. Chen, M. Meterelliyoz and K. Roy, “A CMOS thermal sensor and its applications in temperature adaptive design,” ISQED ’06, Mar. 2006. [19] F. Fiori and P. S. Crovetti, “A new compact temperature-compensated CMOS current reference,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 52, no. 11, pp. 724-728, Nov. 2005. [20] M. A. P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3�� inaccuracy of ±0.5 °C from -50 °C to 120 °C,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 454-461, Feb. 2005. [21] V. Szekely, M. Rencz, A, Pahi, and B. Courtois, “Thermal monitoring and testing of electornic systems,” IEEE Trans. Components and Packaging Technology, vol. 22, no. 2, pp 231-237, Jun. 1999. [22] P. Tadayon et. al., Intel Tech. Journal Q3, 2000. [23] R. McGowen, C. A. Poirier, C. Bostak, J. Ignowski, M. Millican, W. Parks, and S. Naffziger, “Power and temperature control on a 90-nm Itanium family processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 229-237, Jan. 2006.
|