跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王森巨
論文名稱:以可撓曲電測陣列發展質量流量測系統
論文名稱(外文):Development A Massflow Measurement System Based on Flexible Electrical Sensor Array
指導教授:張興政
口試委員:陳雅惠張一楠張興政
口試日期:2015-06-30
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:73
中文關鍵詞:PDMS質量流量測微機電系統可撓式感測結構
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究以微機電系統(Microelectromechanical system, MEMS)製程技術為基礎,搭配可撓曲高分子材料聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)成型技術,製作PDMS可撓式基板,並將電感電測元件製作於PDMS上。電感結構以平面螺旋線圈為主,電場可集中於元件中心,提高感測靈敏度,可應用於微質量流檢測。當待測液中高導磁係數粒子流經電感中心,電感值與阻抗產生變化,電路轉換將電感與阻抗變化轉變為電壓變化輸出,對流體進行檢測與分析。電感式微感測元件,響應速度快,設計即時擷取電訊號,達到快速檢測分析之要求。電測元件以陣列排列,使待測液體流經電感電測元件產生時間差以得知流量與流速。本研究設計電測方法量測與流速相關的響應時間差,研製可撓曲電測陣列之質量流量測系統。系統包含微機電感測結構、感測分析電路、數據即時分析顯示人機介面,質量流即時動態量測與分析裝置。完成新型流量微感測機制,提高感測靈敏度,並降低能源消耗,利用軟性可撓曲材料完成電氣絕緣感測結構,可在嚴苛液體環境進行質量流感測。
The research develops PDMS flexible substrate based electrical sensor array manufactured by the photolithography and life-off process of the micro-electro-mechanical system technology for measuring massflow. The main sensing structures are flat inductors that can concentrate electric field centralized to promotion sensitivity. The massflow mixed high magnetic permeabilitiy powders flow through the sensor that can vary sensing inductance and response time. The sensing system comprises flexible materials, MEMS structures, sensing circuits and a human-machine interface. A MEMS-based sensing mechanism is developed for measuring mass flow to increase sensitivity and reduce energy consumption. The flexible materials are used as electrical insulation layers to help effective measurement in harsh liquid environment.
目錄
致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3文獻探討 3
1.4研究方法與目標 11
第二章 電測質量流感測原理 12
2.1可撓式電測感測結構 12
2.1.1 PDMS沉積金屬薄膜 13
2.1.2 PDMS混合導電粒子 14
2.1.3 PDMS金屬埋入 14
2.1.4 PDMS金屬翻黏 15
2.2 電測元件感測原理 16
2.2.1 電感感測原理 16
2.3 RLC交流電路 17
2.3.1交流電阻電路 17
2.3.2交流電容電路 18
2.3.3交流電感電路 19
2.3.4 LC共振電路 20
第三章 製程規劃與參數 22
3.1電感式微感測結構設計 22
3.1.1 光罩設計 22
3.1.2 元件設計 23
3.2可撓式電測陣列結構製程規劃 23
3.2.1 PDMS基板成形製程規劃 23
3.2.2電感陣列製程規劃 25
3.3 感測架構與電路規劃 27
3.4 感測擷取裝置 28
3.5訊號傳輸 28
3.6電腦人機介面 29
第四章 量測與分析 30
4.1 可撓式電測感測元件製作與分析 30
4.1.1 可撓式材料製程參數分析 30
4.1.2 可撓式基板製作與參數分析 33
4.1.3 電測結構製程分析 35
4.1.4 元件封裝 40
4.2 電測元件測試 40
4.2.1 元件基本電性量測 40
4.2.2 元件性能測試與分析 41
4.3 質量流量測架構測試 45
4.3.1感測電路製作與分析 45
4.3.2 即時電腦人機介面 50
4.3.3 元件響應時間量測 51
第五章 結論 55
5.1 結論 55
5.2 優勢與比較 56
5.3 未來展望 57
參考文獻 58
[1]M. Y. Cheng, C. M. Tsao, Y. Z. Lai and Y. J. Yang, “The development of a highly twistable tactile sensing array with stretchable helical electrodes,” Sensors and Actuators A: Physical, pp. 226-233, 2011.
[2]G. Canavese, S. Stassi, M. Stralla, C. Bignardi and C. F. Pirri, “Stretchable and conformable metal–polymer piezoresistive hybrid system,” Sensors and Actuators A: Physical, pp. 191-197, 2012.
[3]C. Y. Chen, C. L. Chang, T. F. Chien and C. H. Luo, “Flexible PDMS electrode for one-point wearable wireless bio-potential acquisition,” Sensors and Actuators A: Physical, pp. 20-28, 2013.
[4]C. W. Park, S. W. Jung, S. C. Lim, J. Y. Oh, B. S. Na, S. S. Lee, H. Y. Chu and J. B. Koo, “Fabrication of well-controlled wavy metal interconnect structures on stress-free elastomeric substrates,” Microelectronic Engineering, pp. 55-60, 2014.
[5]I. Byun, R. Ueno and B. Kim, “Micro-heaters embedded in PDMS fabricated using dry peel-off process,” Microelectronic Engineering, pp. 1-4, 2014
[6]C. Song, A. R. Aiyar, S. H. Kim and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Transducers 2009, pp. 21-25, 2009.
[7]J. E. Han, D. Kim and K. S. Yun, “All-polymer hair structure with embedded three-dimensional piezoresistive force sensors,” Sensors and Actuators A 188, pp. 89-94, 2012.
[8]Y. Tomimatsu, H. Takahashi, K. Kuwana, T. Kobayashi, K. Matsumoto, I. Shimoyama, T. Itoh and R. Maeda, “A piezoelectric flow sensor for use as a wake-up switch for a wireless sensor network node,” Mechatronics 23, pp. 893-897, 2013.
[9]M. Rajavelu, D. Sivakumar, R. J. Daniel and K. Sumangala, “Perforated diaphragms employed piezoresistive MEMS pressure sensor for sensitivity enhancement in gas flow measurement,” Flow Measurement and Instrumentation 35, pp. 63-75, 2014.
[10]D. W. Lee, K. P. Hwang and S. X. Wang, “Fabrication and Analysis of High-Performance Integrated Solenoid Inductor With Magnetic Core,” IEEE Transactions on Magnetics, VOL. 44, NO. 11, pp. 4089-4095, 2008.
[11]P. J. Chen, W. C. Kuo, W. Li, Y. J. Yang and Y. C. Tai, “Q-Enhanced Fold-and-Bond MEMS Inductors,” Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, 2008.
[12]Y. J. Cha, B. Nama, J. Kim and K. H. Kim, “Evaluation of the planar inductive magnetic field sensors for metallic crack detections,” Sensors and Actuators A 162, pp. 13-19, 2010.
[13]L. Du and J. Zhe, “A high throughput inductive pulse sensor for online oil debris monitoring,” Tribology International 44, pp. 175-179, 2011.
[14]X. Yu, M. Kim, F. Herrault, C. H. Ji, J. Kim and M. G. Allen, “Silicon-embedded 3D toroidal air-core inductor with through-wafer interconnect for on-chip integration,” MEMS 2012, 2012.
[15]J. Kuipers, H. Bruning, S. Bakker and H. Rijnaarts, “Near field resonant inductive coupling to power electronic devices dispersed in water,” Sensors and Actuators A 178, pp. 217-222, 2012.
[16]L. Du, X. Zhu, Y. Han, L. Zhao and J. Zhe, “Improving sensitivity of an inductive pulse sensor for detection of metallic wear debris in lubricants using parallel LC resonance method,” Measurement Science and Technology, 2013.
[17]X. Sun, Y. Zheng, X. Peng, X. Li and H. Zhang, “Parylene-based 3D high performance folded multilayer inductors forwireless power transmission in implanted applications,” Sensors and Actuators A 208, pp. 141-151, 2014.
[18]W. Y. Zhang, G. S. Ferguson and S. T. Lucic,“Elastomer-supported cold welding for room temperature wafer-level bonding,” Micro Electro Mechanical Systems, pp. 741-744, 2004.
[19]J.T. Feng and Y. P. Zhao, “Experimental observation of electrical instability of droplets on dielectric layer,” J. Phys. D: Appl. Phys. 41, 2008.
[20]J. H. Koschwanez, R. H. Carlson, D. R. Meldrum, “Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent,”PLoS ONE Volume 4 Issue 2, pp. 1-5, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top