跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 06:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾珮珊
研究生(外文):Tseng, Pei-Shan
論文名稱:以光激發中紅外光探測光譜研究石墨烯之超快動力學
論文名稱(外文):Study of ultrafast dynamics in graphene by optical pump mid-infrared probe spectroscopy
指導教授:羅志偉羅志偉引用關係
指導教授(外文):Luo, Chih-Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:115
中文關鍵詞:石墨烯光激發中紅外探測費米能階超快動力學
外文關鍵詞:GrapheneOptical pump mid-IR probeFermi levelUltrafast dynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:357
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用自行架設之光激發中紅外探測系統研究不同層數石墨烯之載子超快動力學行為。當探測光光子能量大於二倍費米能時,光激發可導致中紅外波段反射率增加;反之,探測光光子能量小於二倍費米能時,光激發將導致中紅外波段吸收率增加。因此,藉由改變光激發中紅外探測系統之探測光子能量,即可觀察到石墨烯中能帶結構內之載子動力學行為。因基板效應以及層間交互作用,不同層數的石墨烯,其內部之載子動力學行為也各有不同。利用上述分析方法,本論文成功地得到化學氣相沈積(Chemical Vapor Desposition, CVD)成長不同層數石墨烯的費米能階。除此之外,透過分析電子聲子散射行為之弛緩時間,可得到費米能階附近之電子聲子耦合強度,且分析結果與其他研究團隊實驗及理論都非常吻合。因此,本實驗室所建立之光激發中紅外光探測光譜技術可望成為檢驗石墨烯費米能階位置之新利器。
Using ultrafast optical pump mid-infrared probe spectroscopy (OPMP), we study the relaxation dynamics of photoexcited carriers in monolayer and multilayer graphene. The substrate-induced charge density profile in graphene is determined through the spectra of transient reflectivity changes which are well described by carrier occupation probability near Fermi energy with tuning the probe photon energy. We succeeded in getting the Fermi energy of graphene films grown by chemical vapor deposition (CVD) on sapphire substrates. For photon energies about twice the value of the Fermi energy, the transient responses of pump-induced absorption will change to pump-induced reflection. Additionally, we analyzed the carrier-phonon coupling strength by the relaxation dynamics of carriers, which are consistent with other experimental and theoretical results. Finally, the optical pump mid-infrared probe spectroscopy would be a new technique to study the Fermi level in graphene.
中文摘要 i
Abstract in English ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xv
第一章 緒論 16
1.1 石墨烯簡介 16
1.2 超快光學簡介 18
1.3 研究動機 19
第二章 石墨烯的性質與製備 21
2.1 石墨烯的結構與性質 21
2.1.1 石墨烯的晶體結構 21
2.1.2 石墨烯的電子能帶 22
2.1.3 石墨烯的聲子能帶 24
2.2 石墨烯的製備 26
2.2.1 機械剝離 26
2.2.2 熱裂解磊晶成長於碳化矽上 28
2.2.3 化學剝離法 29
2.2.4 化學氣相沉積法 31
2.2.5 樣品的製備 36
第三章 石墨烯之特性 38
3.1 可見光到遠紅外光光譜 38
3.2 拉曼光譜 44
3.2.1 拉曼散射原理 44
3.2.2 共振拉曼散射 46
3.2.3 拉曼光譜在石墨檢測上之應用 46
3.2.4 樣品之聲子振動頻譜 53
第四章 時間解析光譜系統與原理 56
4.1 激發探測實驗原理 56
4.2 光激發中紅外探測系統 59
4.2.1光激發中紅外探測系統架構 59
4.2.2 中紅外脈衝光產生機制 62
4.2.3 中紅外脈衝光之特性與檢測 64
4.2.4 激發光二次反射之消除 71
第五章 實驗結果與討論 74
5.1 石墨烯之時間解析光譜 74
5.1.1 光激發中紅外探測光譜-A系列石墨烯 79
5.1.2 光激發中紅外探測光譜-B系列石墨烯 83
5.2 石墨烯費米能階的探討 86
5.2.1 瞬時反射率光譜振幅與費米能階之關係 95
5.2.2 弛緩行為與費米能階之關係 99
5.3 石墨烯之電子聲子耦合強度 101
第六章 結果與未來展望 105
參考文獻 106
附錄A 時間解析光譜擬合方法的探討 113
[1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666 (2004).
[2]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, "Room-temperature quantum Hall effect in graphene," Science 315, 1379 (2007).
[3]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature 438, 197 (2005).
[4]S. Rumyantsev, M. S. Shur, and M. Levinshtein, "Handbook series on semiconductor parameter ," Singapore : World Scientific, 1996.
[5]Web site:Pete Spotts, " 'Wonder material' graphene wins scientists 2010 Nobel Prize in physics," The Christian Science Monitor (2010).
[6]A. H. Zewail, "Femtochemistry: ultrafast dynamics of the chemical bond ," World Scientific Pub Co Inc, 1994.
[7]羅志偉,「超高時間解析量測」,物理雙月刊,三十二卷三期,186-187頁,2010年6月。.
[8]Paul A. George, Jared Strait, Jahan Dawlaty, Shriram Shivaraman, Mvs Chandrashekhar, Farhan Rana, and Michael G. Spencer, "Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene," Nano Letters 8, 4248 (2008).
[9]D. Sun, Z. K. Wu, C. Divin, X. Li, C. Berger, W. A. De Heer, P. N. First, and T. B. Norris, "Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy," Phys. Rev. Lett. 101, 157402 (2008).
[10]J. M. Dawlaty, S Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, "Measurement of ultrafast carrier dynamics in epitaxial graphene," Appl. Phys. Lett. 92, 042116 (2008).
[11]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater. 6, 183 (2007).
[12]Chun Chieh Lu, "Controlled growth of single layer and double layer graphene sheets on patterned silicon wafers," NTHU, Thesis of Master, July 2009.
[13]Li Yang, Cheol-Hwan Park, Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, "Quasiparticle Energies and Band Gaps in Graphene Nanoribbons," Phys. Rev. Lett. 99, 186801 (2007).
[14]Gianluca Giovannetti, Petr A. Khomyakov, Geert Brocks, Paul J. Kelly, and Jeroen van den Brink, "Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations," Phys. Rev. B 76, 073103 (2007).
[15]S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, "Tight-binding description of graphene," Phys. Rev. B 66, 35412 (2002).
[16]C. Bena and G. Montambaux, "Remarks on the tight-binding model of graphene," New J. Phys. 11, 095003 (2009).
[17]Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and graphene oxide: synthesis, properties, and applications," Adv. Mater. 22, 3906 (2010).
[18]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and A. N. Marchenkov, "Electronic confinement and coherence in patterned epitaxial graphene," Science 312, 1191 (2006).
[19]Gordon W. Semenoff, "Condensed-matter simulation of a three-dimensional anomaly," Phys. Rev. Lett. 53, 2449 (1984).
[20]P. R. Wallace, "The band theory of graphite," Phys. Rev. 71, 622 (1947).
[21]L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Phys. Rep. 473, 51 (2009).
[22]J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon, "Phonon dispersion in graphite," Phys. Rev. Lett. 92, 75501 (2004).
[23]P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett. 91, 063124 (2007).
[24]J. Hass, W. A. De Heer, and E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene," J. Phys.: Condens. Matter 20, 323202 (2008).
[25]B. C. Brodie, "On the atomic weight of graphite," Philos. Trans. R. Soc. London 149, 249 (1859).
[26]Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, "Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets," J. Am. Chem. Soc. 130, 5856 (2008).
[27]D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chem. Soc. Rev. 39, 228 (2009).
[28]C. Hontoria-Lucas, A. J. Lopez-Peinado, J. D. López-González, M. L. Rojas-Cervantes, and R. M. Martin-Aranda, "Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization," Carbon 33, 1585 (1995).
[29]D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nat. Nanotech. 3, 101 (2008).
[30]P. W. Sutter, J. I. Flege, and E. A. Sutter, "Epitaxial graphene on ruthenium," Nat. Mater. 7, 406 (2008).
[31]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature 457, 706 (2009).
[32]A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Lett. 9, 30 (2009).
[33]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science 320, 1308 (2008).
[34]C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, "Optical response of large scale single layer graphene," Appl. Phys. Lett. 98, 071905 (2011).
[35]S. Reich and C. Thomsen, "Raman spectroscopy of graphite," Phil. Trans. R. Soc. A 362, 2271 (2004).
[36]蔡淑慧,「拉曼光譜在奈米碳管檢測上之應用」,奈米通訊,第十二卷第二期,47頁,2005年5月。.
[37]L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago, and M. A. Pimenta, "General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy," Appl. Phys. Lett. 88, 163106 (2006).
[38]A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects," Solid State Commun. 143, 47 (2007).
[39]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, and S. Roth, "Raman spectrum of graphene and graphene layers," Phys. Rev. Lett. 97, 187401 (2006).
[40]Z. Ni, Y. Wang, T. Yu, and Z. Shen, "Raman spectroscopy and imaging of graphene," Nano Res. 1, 273 (2008).
[41]洪勝富,齊正中,「時間解析激發-探測技術」,物理雙月刊,二十卷五期,553頁,1998年10月。
[42]小林孝嘉,籔下篤史,羅志偉,「超短脈衝雷射在超快動力學研究之應用」,物理雙月刊,三十二卷三期,197頁,2010年6月。
[43]Shin An Ku, "Study of the optical characteristics and MIR generation in GaSe:S and GaSe:Te crystals," NCTU, Thesis of Master, August 2007.
[44]D. Sun, C. Divin, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, "Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene," Phys. Rev. Lett. 104, 136802 (2010).
[45]S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, and C. Berger, "Carrier relaxation in epitaxial graphene photoexcited near the Dirac point," Phys. Rev. Lett. 107, 237401 (2011).
[46]K. P. Loh, Q. Bao, J. Yang, "The chemistry of graphene," J. Mater. Chem. 20, 2277 (2010).
[47]N. A. van Dantzig and P. C. M. Planken, "Time-resolved far-infrared reflectance of n-type GaAs," Phys. Rev. B 59, 1586 (1999).
[48]Kai Yau Shih, "Study of the electrodynamics properties of multi-layers CVD graphene by Terahertz-time domain sperctroscopy," NCTU, Thesis of Master, July 2011.
[49]T. Ohta, Aaron Bostwick, J. L. McChesney, Thomas Seylleret, "Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy," Phys. Rev. Lett. 98, 206802 (2007).
[50]Donald A. Neamen," Semiconductor physics and devices : basic principles," 2nd ed.,New York : McGraw Hill, 2003.
[51]H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, and C. S. Ruiz-Vargas, "Ultrafast relaxation dynamics of hot optical phonons in graphene," Appl. Phys. Lett. 96, 081917 (2010).
[52]J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, and G. G. Gurzadyan, "Femtosecond UV-pump/visible-probe measurements of carrier dynamics in stacked graphene films," Appl. Phys. Lett. 97, 163103 (2010).
[53]J. Shang, T. Yu, J. Lin, and Gagik G. Gurzadyan, "Ultrafast electron−optical phonon scattering and quasiparticle lifetime in CVD-grown graphene," ACS Nano 5, 3278 (2011).
[54]B. Mansart, D. Boschetto, A. Savoia, F. Rullier-Albenque, F. Bouquet, E. Papalazarou, A. Forget, D. Colson, A. Rousse, and M. Marsi, "Ultrafast transient response and electron-phonon coupling in the iron-pnictide superconductor Ba(Fe1-xCox)2As2," Phys. Rev. B 82, 024513 (2010).
[55]Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, "Graphene thickness determinationusing reflection and contrast spectroscopy," Nano Lett. 7, 2758 (2007).
[56]G. R. Stewart, "Measurement of low-temperature specific heat," Rev. Sci. Instrum. 54, 1 (1983).
[57]C. Gadermaier, A. S. Alexandrov, V. V. Kabanov, P. Kusar, T. Mertelj, X. Yao, C. Manzoni, D. Brida, G. Cerullo, and D. Mihailovic, "Electron-phonon coupling in high-temperature cuprate superconductors determined from electron relaxation rates," Phys. Rev. Lett. 105, 257001 (2010).
[58]A. Tsuneya, "Anomaly of optical phonon in monolayer graphene," J. Phys. Soc. Jpn. 75, 124701 (2006).
[59]J. Yan, S. Goler, T. D. Rhone, M. Han, R. He, P. Kim, V. Pellegrini, and A. Pinczuk, "Observation of magnetophonon resonance of Dirac fermions in graphite," Phys. Rev. Lett. 105, 227401 (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top