跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李冠廷
研究生(外文):Kuan-ting Li
論文名稱:斜角光柵的表面電漿共振感測器
論文名稱(外文):Surface Plasmon Resonance Sensor Based on Tilted Gratings
指導教授:張興政劉文豐劉文豐引用關係
口試委員:張興政劉文豐吳登楨洪三山
口試日期:2016-06-20
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:斜角型光纖光柵表面電漿共振光纖感測器780 nm光柵液體感測
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計開發斜角式光纖光柵液體感測器,以表面電漿共振原理為感測基礎,結合寫製上斜角光纖光柵,利用斜角式光纖光柵將光能量激發表面電漿波,使其與漸逝波耦合成表面電共振。為了提高感測靈敏度,對已經寫製好斜角式的光纖光柵作單側邊拋光與蝕刻。製作流程大致分為三個步驟,第一步,光纖寫製上斜角式光柵,使光能量能進入纖殼層內;第二步,將寫製完斜角光柵的光纖,進行單側邊研磨拋光與蝕刻,使漸逝場的現象更明顯;最後,利用濺鍍機鍍上金屬,作為表面電漿共振的主要介質,製作完成本研究之光纖光柵感測元件。本實驗量測架構是以780 nm光源為入射光,因為此波長與表面電漿共振波長接近,能有較好的感測靈敏度,而斜角光纖光柵也是以780 nm光柵作搭配。實驗結果表明,量測鹽水和漂白水濃度,得到感測靈敏度分別為48.11 nm/RIU和158.73 nm/RIU。
In this study, an optical fiber-based microsensor is developed by designing tilted optical fiber grating measurement system based on surface plasmon resonance technology. The tilted fiber gratings were applied to excite the surface plasma wave and evanescent coupling with a surface plasmon resonance. In order to improve its sensing sensitivity, we have polished single side of optical fiber in the written tilted fiber gratings. The fabrication process is divided into three steps. First, by writing tilted fiber gratings in optical fiber, the light can enter into cladding. Second, by using side polishing fabrication in the written tilted fiber gratings, enhance the evanescent field can be enhanced obviously. Finally, by using a sputtering machine to deposit metal films on the surface of optical fibers, they are main media of surface plasma resonance. The sensors have been completed after above-mentioned fabrication. In this study, the incident light with 780 nm wavelength was used as the laser source because the wavelength approaches surface plasmon resonance wavelength. It have good sensing sensitivity and the space of tilted fiber gratings is 780 nm. Experimental results show that the sensitivity of brine and blanching water are 48.11 nm/RIU and 158.73 nm/RIU respectively.
致謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻探討 4
1.4 研究流程與架構 13
第二章 光纖基本感測原理 14
2.1 光纖基礎理論 14
2.1.1 光纖構造和材質 14
2.1.2 光纖傳輸損失 15
2.1.3 光傳遞原理 16
2.2 光纖光柵 18
2.2.1 短週期光纖光柵 19
2.2.2 斜角式光纖光柵 21
2.3 光纖漸逝場原理 23
2.4 表面電漿共振感測原理 24
第三章 斜角光纖光柵與量測系統設計 26
3.1 量測系統架構設計 26
3.2 光纖光柵感測元件製作 27
3.2.1 相位光罩法和斜角光柵寫製 27
3.2.2 光纖單側邊研磨拋光技術 30
3.2.3 光纖蝕刻技術 32
3.2.4 金屬薄膜濺鍍 34
第四章 量測與分析 36
4.1 基本假設 36
4.2 光纖光柵寫製 36
4.2.1 短週期光纖光柵 36
4.3 光纖單側邊研磨拋光 39
4.3.1 氧化鋁粉末與鑽石拋光膜研磨拋光 39
4.4 光纖蝕刻分析 41
4.5 光纖金屬薄膜分析 45
4.6 不同溫度與彎曲對表面電漿共振之影響 47
4.6.1 溫度量測 47
4.6.2 彎曲量測 48
4.7 不同折射率液體對表面電漿共振之影響 49
4.7.1 鹽水液體量測 49
4.7.2 漂白水液體量測 51
4.7.3 重複性量測 51
4.8 可見光對於感測器之影響 52
4.9 不同溫度之待測液體對於感測器之影響 53
第五章 結論與未來發展 55
5.1 結論 55
5.2 未來發展 57
參考文獻 58
[1]江毅,高級光纖傳感技術,科學出版社,初版,民國98年。
[2]張自嘉,光纖光柵理論基礎與傳感技術,科學出版社,初版,民國98年。
[3]G. Pereira, C. Frias, H. Faria, O. Frazão and A.T. Marques, “On the improvement of strain measurements with FBG sensors embedded in unidirectional composites,” Polymer Testing, Vol. 32, pp. 99-105, 2013.
[4]H. Liu, S. W. Or and H. Y. Tam, “Magnetostrictive composite–fiber Bragg grating (MC–FBG) magnetic field sensor,” Sensors and Actuators A:Physical, Vol. 173, pp. 122-126, 2012.
[5]L. Coelho, D. Viegas, J. L. Santos and J. M. M. M. de Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sensors and Actuators B:Chemical, Vol. 202, pp. 929-934, 2014.
[6]M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sensors and Actuators B:Chemical, Vol. 203, pp. 621-625, 2014.
[7]A. Nooke, U. Beck, A. Hertwig, A. Krause, H. Kruger, V. Lohse, D. Negendank and J. Steinbach, “On the application of gold based SPR sensors for the detection of hazardous gases,” Sensors and Actuators B:Chemical, Vol. 149, pp. 194-198, 2010.
[8]R. SlavõÂk, J. Homola, J. Čtyroký and E. Brynda,“Novel spectral fiber optic sensor based on surface plasmon resonance,” Sensors and Actuators B:Chemical, Vol. 74, pp. 106-111, 2001.
[9]A. O. Dikovska, G. B. Atanasova, N. N. Nedyalkov, P. K. Stefanovb, P. A. Atanasov, E. I. Karakoleva and A. T. Andreev, “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sensors and Actuators B:Chemical, Vol. 146, pp. 331-336, 2010.
[10]N. Cennamo, G. D’Agostino, R. Galatus, L. Bibbò, M. Pesavento and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sensors and Actuators B:Chemical, Vol. 188, pp. 221-226, 2013.
[11]S. K. Srivastava, R. Verma and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sensors and Actuators B:Chemical, Vol. 153, pp. 194-198, 2011.
[12]P. Bhatia and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications,” Sensors and Actuators B:Chemical, Vol. 161, pp. 434-438, 2012.
[13]Y. Zhao, Z. Deng and Q. Wang, “Fiber optic SPR sensor for liquid concentration measurement,” Sensors and Actuators B:Chemical, Vol. 192, pp. 229-233, 2014.
[14]Y. P. Miao, B. Liu, K. Zhang and Qi-da Zhao, “Linear edge and temperature characteristic of tilted fiber Bragg gratings cladding-mode envelope,” Optical Fiber Technology, Vol. 17, pp. 286-290, 2011.
[15]Q. Jiang, D. Hu and M. Yang, “Simultaneous measurement of liquid level and surrounding refractive index using tilted fiber Bragg grating,” Sensors and Actuators A:Physical, Vol. 170, pp. 62-65, 2011.
[16]L. B. Melo, J. M. M. Rodrigues, A. S. F. Farinha, C. A. Marques, L. Bilro, N. Alberto, J. P. C. Tome and R. N. Nogueira, “Concentration sensor based on a tilted fiber Bragg grating for anions monitoring,” Optical Fiber Technology, Vol. 20, pp. 422-427, 2014.
[17]X. Zhao, Yu Chu-Su, Woo-Hu Tsai, Ching-Ho Wang, Tsung-Liang Chuang, Chii-Wann Lin, Yu-Chia Tsao and Mu-Shiang Wu, “Improvement of the sensitivity of the surface plasmon resonance sensors based on multi-layer modulation techniques,” Optics Communications, Vol. 335, pp. 32-36, 2015.
[18]S. Singh and B. D. Gupta, “Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing high index layer and smart hydrogel,” Sensors and Actuators B:Chemical, Vol. 173, pp. 268-273, 2012.
[19]V. Voisin, J. Pilate, P. Damman, P. Mégret and C. Caucheteur, “Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors,” Biosensors and Bioelectronics, Vol. 51, pp. 249-254, 2014.
[20]M. D. Baiad, M. Gagné, Wendy-Julie Madore, E. D. Montigny, N. Godbout, C. Boudoux and R. Kashyap, “Surface plasmon resonance sensor interrogation with a double-clad fiber coupler and cladding modes excited by a tilted fiber Bragg grating,” OPTICS LETTERS, Vol. 39, pp. 4911-4914, 2013.
[21]C. Shen, Y. Zhang, W. Zhou and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” APPLIED PHYSICS LETTERS, Vol. 104, pp. 071106-071106-5, 2014.
[22]M. D. Baiad and R. Kashyap, “Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings,” OPTICS LETTERS, Vol. 40, pp. 115-118, 2015.
[23]T. Erdogan, “Fiber Grating Spectra,” Journal of Lightwave Technology, Vol. 15 (8), pp. 1277-1294, 1997.
[24]沈峰嘉,拋光之光纖光柵的氫氣感測器,逢甲大學電機工程研究所,碩士論文,民國九十五年。
[25]陳翊齊,以光纖表面電漿共振製作蛋白質動態量測系統之研究,銘傳大學電子工程研究所,碩士論文,民國一零二年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top