跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 19:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴至祥
研究生(外文):Jhih-Siang Lai
論文名稱:基於圖形群聚之基因網路重建演算法
論文名稱(外文):Graph-Based Clustering Approaches for Gene Network Reconstruction
指導教授:陳中明陳中明引用關係
指導教授(外文):Chung-Ming Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:67
中文關鍵詞:基因網路正規切割時間延遲
外文關鍵詞:Gene NetworkNormalized CutsTime Lag
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解生物基因間的調控關係,生物學家常利用干擾性核醣核酸(RNAi),或是基因剔除(gene knockout)的方式來觀察生物系統的反應。資訊學家則嘗試利用演算法以mRNA隨時間變化的表現量曲線重建出可能的基因間調控關係。然而,基因間的調控包含許多階段,包括轉錄 (Transcription)、轉錄後修飾(Post-transcriptional modification) 、轉譯 (Translation) 、mRNA的降解 (mRNA degradation) 、轉譯後修飾 (Post-translational modification)等。這些階段都需要時間來反應,因此許多研究根據時間延遲的特徵,分析基因間的調控關係。
在這份研究中,我們使用兩個方法來重建基因網路。一個是Normalized Cuts
,以圖學方式試著將有功能性的基因調控網路分割出來。另一個方法則是PARE (Pattern Recognition Approach)演算法,一個以時間延遲(time-lagged)以及非線性特徵作為基因間調控關係的推論演算法。我們使用酵母菌的mRNA隨時間變化的表現量作為重建基因調控網路的分析材料,再以KEGG pathway資料庫、BIOGRID 交互影響資料庫與MIPS資料庫做為比較分析的參考。而從分析出的F score結果來看,我們的方法優於Kim等人所發展出的動態貝式網路。
最後,我們將方法應用到一個實際的例子,yox1與yhp1兩個基因皆剔除的酵母菌的生物晶片上,分析其mRNA隨時間變化的表現量。由於細胞每段時期間轉換機制尚未完全被了解,目前已知yox1與yhp1是以負回饋的機制控制細胞在G1時期的時間。我們成功地找到與細胞生命週期相關的調控網路,其中一個調控網路與細胞分裂相關。藉由這份應用結果,我們期望能夠探究出更多關於細胞生命週期中每個時期轉換間的調控機制。
To understand regulatory relationships between genes in real life. Biologists often use RNA interference (RNAi) or knockout genes to observe the response in the real life system. Informationists try to reconstruct regulatory relationship between genes from mRNA expression profile by algorithms or mathematic models. There are several phases involved in gene regulation such as transcription, post-transcriptional modifications, translation,
mRNA degradation and post-translational modifications .Time is essential for all these phases to be completed and many researches analyze regulation via these features.
In this study, we use two methods to reconstruct regulatory relationships between genes. One is a graph partition algorithm named Normalized Cuts for partitioning off genes into functional gene network. The other method, PARE (Pattern Recognition Approach), an algorithm based on time-lagged non-linear feature of the profile, is to infer regulation between genes. In addition, we use yeast microarray to construct gene regulatory networks and check results from KEGG pathway database, BIOGRID interaction database and MIPS database. Comparing our F score result with Dynamic Bayesian Network developed by Kim, et al., it shows that our method performs better than theirs.
Finally, we apply our method to a real case in yeast microarray in which yox1 and yhp1 are both deleted and we analyze its mRNA expression time profile. Although mechanisms between phases in cell cycle are not clear, yox1 and yhp1 are two genes known controlling duration of a cell in G1 phase by negative feedback. We successfully find networks associated with cell cycle and one of the networks is associated with cell mitosis. In the future, we hope to decipher more mechanisms between phases in cell cycle.
口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 序論 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 4
第二章 文獻探討 6
2.1基因網路重建演算法與模型的探討 6
2.2關於時間延遲的文獻探討 12
第三章 研究方法與材料 16
3.1以圖形理論方式重建網路 16
3.2 Normalized Cuts 19
3.3 PARE (Pattern Recognition Approach) 23
3.4 演算法流程 26
3.5生物驗證與應用材料 29
3.5.1生物驗證比對資料 29
3.5.2生物應用資料 30
第四章 研究成果與討論 31
4.1生物驗證比較資料結果 31
4.1.1 Dynamic Bayesian重建細胞代謝網路在BIOGRID上的比對 32
4.1.2 Dynamic Bayesian重建細胞生命週期網路在BIOGRID上的比對 33
4.1.3 圖形群聚演算法重建細胞代謝網路在BIOGRID上的比對 34
4.1.4 圖形群聚演算法重建細胞生命週期網路在BIOGRID上的比對 35
4.1.5 Dynamic Bayesian重建細胞代謝網路在MIPS上的比對 37
4.1.6 Dynamic Bayesian重建細胞生命週期網路在MIPS上的比對 38
4.1.7 圖形群聚演算法重建細胞代謝網路在MIPS上的比對 39
4.1.8 圖形群聚演算法重建細胞生命週期網路在MIPS上的比對 40
4.1.9兩種方法重建細胞代謝網路在KEGG上的比對 42
4.1.10兩種方法重建細胞生命週期網路在KEGG上的比對 45
4.2生物應用資料結果 49
4.3 生物應用資料討論 51
第五章 結論與展望 54
參考文獻 56
附錄 62
[01]Chen T, He HL, Church GM. (1999) Modeling gene expression with differential equations. Pac Symp Biocomput. 4. 29-40.
[02]Ideker TE, Thorsson V, Karp RM. (2000) Discovery of regulatory interactions through perturbation: inference and experimental design. Pac Symp Biocomput. 5. 302-313.
[03]Friedman N, Linial M, Nachman I, Pe''er D. (2000) Using Bayesian networks to analyze expression data. J Comput Biol. 7. 601-620.
[04]Chen T, Filkov V, Skiena SS. (2001) Identifying gene regulatory networks from experimental data. Parallel Computing. 27. 141-162.
[05]Arkin A,Shen P, Ross J. (1997) A Test Case of Correlation Metric Construction of a Reaction Pathway from Measurements. Science . 277. 1275-1279.
[06]Schmitt WA Jr, Raab RM, Stephanopoulos G. (2004) Elucidation of Gene Interaction Networks Through Time-Lagged Correlation Analysis of Transcriptional Data. Genome Res. 14. 1654-1663.
[07]Bhardwaj N, Lu H. (2005) Correlation between gene expression profiles and protein-protein interactions within and across genomes. Bioinformatics. 21. 2730-2738.
[08]Liu Y, Zhao H. (2004) A computational approach for ordering signal transduction pathway components from genomics and proteomics Data. BMC Bioinformatics. 5. 158.
[09]Ji L, Tan KL. (2005) Identifying time-lagged gene clusters using gene expression data. Bioinformatics. 21. 509-516.
[10]Meuleman W,Welten MC,Verbeek FJ. (2006) Construction of Correlation Networks with Explicit Time-Slices Using Time-Lagged, Variable Interval Standard and Partial Correlation Coefficients. COMPUTATIONAL LIFE SCIENCES II, PROCEEDINGS. 4216. 236-246.
[11]Shi Y, Mitchell T, Bar-Joseph Z. (2007) Inferring pairwise regulatory relationships from multiple time series datasets. Bioinformatics. 23. 755-763.
[12]Wu WS, Li WH, Chen BS. (2007) Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics. 8. 188.
[13]Agrawal A, Mittal A (2005) A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time Delay Gene Networks. Proceedings of World Academy of Science, Engineering and Technology 9. 167-174.
[14]Ramsey SA, Klemm SL, Zak DE, Kennedy KA, Thorsson V, Li B, Gilchrist M, Gold ES,Johnson CD, Litvak V, Navarro G, Roach JC, Rosenberger CM, Rust AG, Yudkovsky N,Aderem A, Shmulevich I. (2008) Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol. 4. e1000021.
[15]Hashimoto RF, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ER. (2004) Growing genetic regulatory networks from seed genes. Bioinformatics. 20. 1241-1247.
[16]Pena JM, Bjorkegren J, Tegner J. (2005) Growing Bayesian network models of gene networks from seed genes. Bioinformatics. 21. 224-229.
[17]Shi J, Malik J (2000) Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 22. 888-905.
[18]Chuang CL, Jen CH, Chen CM, Shieh GS. (2008) A pattern recognition approach to infer time-lagged genetic interactions. Bioinformatics. 24. 1183-1190.
[19]Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. (1998) Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molecular Biology of the Cell. 9. 3273-3297.
[20]Pramila T, Miles S, GuhaThakurta D, Jemiolo D, Breeden LL. (2002) Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes Dev. 16. 3034-3045.
[21]Lee I, Date SV, Adai AT, Marcotte EM. (2004) A probabilistic functional network of yeast genes. Science. 306. 1555-1558.
[22]Hagen L, Kahng AB. (1992) New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems . 11. 1074-1085.
[23]Golub GH, Van Loan CF. (1996) Matrix Computations. Baltimore,Johns Hopkins University Press.
[24]Kohane IS, Kho AT, Butte AJ. (2003) Microarrays for an Integrative Genomics. Cambridge, MA:MIT Press.
[25]Kim S, Imoto S, Miyano S. (2004) Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems. 75. 57-65.
[26]Rupes I. (2002) Checking cell size in yeast. Trends Genet. 18. 479-485.
[27]Pramila T, Wu W, Miles S, Noble WS, Breeden LL. (2006) The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev. 20. 2266-2278.
[28]Santisteban MS, Arents G, Moudrianakis EN, Smith MM. (1997) Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. EMBO J. 16. 2493-2506.
[29]Stuart D, Wittenberg C. (1994) Cell cycle-dependent transcription of CLN2 is conferred by multiple distinct cis-acting regulatory elements. Mol Cell Biol. 14. 4788-4801.
[30]Archambault V, Chang EJ, Drapkin BJ, Cross FR, Chait BT, Rout MP. (2004) Targeted proteomic study of the cyclin-Cdk module. Mol Cell. 14. 699-711.
[31]Martinez JS, Jeong DE, Choi E, Billings BM, Hall MC. (2006) Acm1 is a negative regulator of the CDH1-dependent anaphase-promoting complex/cyclosome in budding yeast. Mol Cell Biol. 26. 9162-9176.
[32]Benjamin L,James DW, Baker, Stephen PB, Alexander G, Michael L, Richard L. (2003) Genes VIII. 524.
[33]Krebs JE, Kuo MH, Allis CD, Peterson CL. (1999) Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 13. 1412-1421.
[34]Kovacech B, Nasmyth K, Schuster T. (1996) EGT2 Gene Transcription Is Induced Predominantly by Swi5 in Early G1. Mol Cell Biol. 16. 3264-3274.
[35]Tanay A, Steinfeld I, Kupiec M, Shamir R. (2005) Integrative analysis of genome-wide experiments in the context of a large high-throughput data compendium. Mol Syst Biol. 1 2005.0002.
[36]Ufano S, Pablo ME, Calzada A, del Rey F, Vazquez de Aldana CR. (2004) Swm1p subunit of the APC/cyclosome is required for activation of the daughter-specific gene expression program mediated by Ace2p during growth at high temperature in Saccharomyces cerevisiae. J Cell Sci. 117. 545-557.
[37]Iwase M, Toh-e A. (2001) Nis1 encoded by YNL078W: a new neck protein of Saccharomyces cerevisiae. Genes Genet Syst. 76. 335-343.
[38]Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW. (2008) An in vivo map of the yeast protein interactome. Science. 320. 1465-1470.
[39]Green R, Lesage G, Sdicu AM, Menard P, Bussey H. (2003) A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology. 149. 2487-2499.
[40]Colman-Lerner A, Chin TE, Brent R. (2001) Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell. 107. 739-750.
[41]Doolin MT, Johnson AL, Johnston LH, Butler G. (2001) Overlapping and distinct roles of the duplicated yeast transcription factors Ace2p and Swi5p. Mol Microbiol. 40. 422-432.
[42]Aronova S, Wedaman K, Anderson S, Yates J 3rd, Powers T. (2007) Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell. 18. 2779-2794.
[43]Kastan MB, Kuerbitz SJ. (1993) Control of G1 arrest after DNA damage.Environ Health Perspect. 101. 55-58.
[44]Stuart JM, Segal E, Koller D, Kim SK. (2003) A gene-coexpression network for global discovery of conserved genetic modules.Science. 302. 249-255.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top