跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 08:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳越夫
研究生(外文):Yueh Fu Wu
論文名稱:Cdc20上Mad2-biding motif的功能分析: 活化所需與足以抑制APC/C的胺基酸
論文名稱(外文):Functional analysis of the Cdc20 Mad2-binding motif: amino acid necessary for activation and sufficient for inhibition of the APC/C
指導教授:曲桐
指導教授(外文):S. C. Schuyler
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:49
中文關鍵詞:細胞週期有絲分裂紡綞體檢查點Mad2
外文關鍵詞:cell cyclespindle checkpointMad2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:537
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞的有絲分裂紡綞體檢查點是一種監察機制,監視有絲分裂中期到後期時染色體的分配,並利用延遲週期的方式來避免染色體分離錯誤。有絲分裂紡綞體檢查點的目標蛋白是Cdc20,它調控細胞分裂中期到末期的轉折。其機制是利用調節Cdc20的兩個流向來調控有絲分裂紡綞體檢查點。其中一個流向會活化APC/C (細胞週期調控者之後期促進複合體)使細胞進入細胞分裂末期。另一條路徑則會與其他檢查點蛋白質結合形成細胞週期複合體,使細胞週期無法進行。但目前對於有絲分裂紡綞體檢查點的分子機制卻只有概述。為了抑制細胞週期的進行,Mad2會與APC/C競爭Cdc20上MB-Motif (Mad2-binding Motif)的KIRL序列(活化區塊)。在此篇論文中,我們發現MB-motif有新的功能,亦即活化APC/C。藉由分析單一胺基酸的功能,我們發現Cdc20的L203及Y205是活化APC/C時是必要的; 而Y205及P209則是Mad2抑制作用所必要的。這些觀察指出,Mad2的抑制與APC/C的活化兩種功能並非相互依存並且指出目前所定義的活化區塊應被擴大。在試管中審查MB-motif的胜肽時,發現一個包含整體MB-motif的胜肽「PQ-66」可能是APC/CCdc20的抑制物。總結這些觀察中,我們提出MB-motif之C端末端序列的胺基酸可能調控APC/C結合的假說,並推斷Mad2會扮演競爭型抑制物的方式與MB-motif結合,達到分離APC/C結合位點與活化位點的方式來抑制APC/C的活性。
Cells contain a surveillance mechanism called the “spindle checkpoint” that monitors spindle attachments on kinetochores, and delays the metaphase-anaphase transition to prevent chromosome mis-segregation. The target of spindle checkpoint is Cdc20, which regulates the metaphase-anaphase transition. The spindle checkpoint regulates the flow of Cdc20 into one of two pathways. One pathway leads to the activation of the APC/C (Anaphase-Promoting Complex/Cyclosome), causing the cell to go into anaphase; the other pathway leads to binding with checkpoint proteins to form the MCC (Mitotic Checkpoint Complex), leading to APC/C inactivation and cell cycle arrest. The molecular details have only been partially defined. To induce cell cycle arrest, Mad2 (Mitotic Arrest Deficient 2) competes with APC/C to bind the MB-motif (Mad2-binding motif) on Cdc20 via a KIRL motif (activator region). Here, we reported that the MB-motif has an additional novel function as an APC/C activator. By characterizing the activities of single amino acid mutants, we found L203 and Y205 in Cdc20 are necessary to activate APC/C, and Y205 and P209 are necessary for Mad2 inhibition. These observations suggest a separation of function for Mad2-inhibition and APC/C activation, and an extension of the currently defined activator region. By screening MB-motif peptides in vitro, “PQ-66”, a peptide including the full MB-motif, was identified as a potential APC/CCdc20 inhibitor. From this observation, we also hypothesize amino acids at the C-terminus of the MB-motif play a role in APC/C binding. We conclude that Mad2-mediates APC/C activity as a competitive inhibitor, which binds with MB-motif to sequester the activator region from the potential APC/C binding site.
Table of Contents
指導教授推薦書…………………………………………………………………………….
口試委員會審定書…………………………………………………………………………….
授權書……………………………………………………………………………. iii
誌謝……………………………………………………………………………. …iv
中文摘要……………………………………………………………………………. v
Abstract……………………………………………………………………………. vii
Table of Contents………………………………………………………………….. ix
Table of Figures…………………………………………………….…………… Xi
CHAPTER I Introduction……………………………………………………… 1
CHAPTER II Material and Methods…………………………………………… 6
2.1 Strain, plasmids, media, and culturing condition ……………………… 6
2.2 Plasmid purification of plasmids ………..…………………………..… 7
2.3 Preparation of 35S-Pds1 and 35S-Cdc20…………………………………. 7
2.4 Preparation of 35S-Pds1 and 35S-Cdc20 Preparation of Cdc20………….. 9
2.5 Time-course APC/C assay with Cdc20 or Cdc20-127………………….. 9
2.6 Inhibition of APC/CCdc20 activity by Mad2………………… 10
2.7 Inhibition of APC/CCdc20 activity by MB-motif peptides ………… 10
2.8 Data analysis ………………………………………………………… 11
CHAPTER III Aim………………………………….…………………………. 12
CHAPTER IV Results …………………………………….……………………. 13
4.1 Establishing a high activity APC/C enzyme assay …………………… 13
4.2 Head to head comparison of APC/CCdc20 and APC/CCdc20-127 activity . 13
4.3 Cdc20-L203A performed similar result as Cdc20-127, whereas other relative mutants do not ………………………………………………… 14
4.4 Cdc20-127 resistant to inhibition by Mad2…………………………… 15
4.5 Full MB motif peptide, PQ66, inhibits APC/C activity ……………… 16
CHAPTER V Discussion………………………………………………. 18
CHAPTER IV Figures………………………………………………… 21
REFERENCES…………………………………………………………….…… 34

Table of Figures
Figure 1. A model of how Cdc20 flow regulates APC/C activity………………. 21
Figure 2. Models of how Cdc20 activates APC/C and forms MCC……………… 22
Figure 3. Important amino acid mutant site(s) in the MB motif of Cdc20……… 23
Figure 4. Inhibition of Mad2 to APC/CCdc20 activity...………….…………………. 24
Figure 5. Measurement of IVT/T 35S-Cdc20 and 35S-Cdc20-127 in triplicate by phosphor-image density after 2 hour………………………………… 25
Figure 6. Measurement of the APC/C activity with different co-activators, Cdc20 or Cdc20-127……………………………………………………………….. 26
Figure 7. Measurement of IVT/T 35S-Cdc20-mutants and the APC/C activity with different co-activator mutants.…………………………........................... 27
Figure 8. Measurement of Mad2 inhibition of APC/CCdc20 and APC/CCdc20-127 activitie…………………………………………………………………… 28
Figure 9. Measurement of Mad2 inhibition of APC/Cco-activators activity……………. 29
Figure 10. Measurement of peptides inhibition of APC/CCdc20 activity …………… . 31
Figure 11. Measurement of PQ66 inhibition of APC/CCdc20 activity………...……... 32
Figure 12. Model of Mad2-mediated inhibition of APC/CCdc20 activity …….……... 33
1. Hwang, L., et al. “Budding yeast Cdc20: a target of the spindle checkpoint”, Science, 279, pp. 1041-1044, Febuary 1998.
2. Chao, W. C., et al. “Structure of the mitotic checkpoint complex”, Nature, 484, pp. 208-213, March 2012.
3. Kimata, Y., et al. “A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment”, Mol. Cell, 32, pp. 576-583, November 2008.
4. Foe I. T., et al. “Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism”, Curr. Biol, 21, pp. 1870-1877, November 2011.
5. Zhang, Y. and Lees, E. “Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: model for spindle checkpoint regulation”, Mol. Cell Biol, 21, pp. 5190-5199, August 2001.
6. Luo, X., et al. “Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20”, Nat. Struct. Biol., 7, pp. 224-229, March 2000.
7. Sironi, L., et al. “Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint”, EMBO J., 21, pp. 2496-2506, May 2002.
8. Li, Y., et al. “MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity”, Proc. Natl. Acad. Sci. U.S.A., 94, pp. 12431-12436, November 1997.
9. Lin, M., et al. “Analysis of cell death in myeloid cells inducibly expressing the cell cycle protein p55Cdc”, Exp. Hematol, 26, pp. 1000-1006, September 1998.
10. Wassmann, K. and Benezra, R. “Mad2 transiently associates with an APC/p55Cdc complex during mitosis”, Proc. Natl. Acad. Sci. U.S.A., 95, pp. 11193-11198, September 1998.
11. Fang., et al. “The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation”, Genes Dev., 12, pp. 1871-1883, Jun 1998.
12. Varetti, G., et al. “Homeostatic control of mitotic arrest”, Mol. Cell, 44, pp. 710-720, December 2011.
13. De Antoni, A., et al. “The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint”, Curr. Biol, 15, pp. 214-225, February 2005.
14. Vink, M., et al. “In vitro FRAP identifies the minimal requirements for Mad2 kinetochore dynamics”, Curr. Biol., 16, pp. 755-766, April 2006.
15. Hewitt, L., et al. “Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex”, J. Cell Biol., 190, pp. 25-34, July 2010.
16. Maldonado, M. and Kapoor, T. M. “Constitutive Mad1 targeting to kinetochores uncouples checkpoint signaling from chromosome biorientation”, Nat. Cell Biol., 13, pp. 475-482, April 2011.
17. Lau, D.T. and Murray, A. W. “Mad2 and Mad3 cooperate to arrest budding yeast in mitosis.” Curr. Biol., 22, pp. 180-190, Febuary 2012.
18. Kulukian, A., et al. “Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding”, Dev. Cell, 16, pp. 105-117, January 2009.
19. Hardwick, K. G. and Murray, A. W. “Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast”, J. Cell. Biol., 131, pp. 709-720, November 1995.
20. Chen, R., et al. “Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores”, J. Cell Biol, 143, pp. 283-295. October 1998.
21. Chen, R. H., et al. “The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins”, Mol. Biol. Cell, 10, pp. 2607-2618, August 1999.
22. Sironi, L., et al. “Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint”, EMBO J., 20, pp. 6371-6382, November 2001.
23. Chung, E., et al. “Spindle checkpoint requires Mad1-bound and Mad1-free Mad2”, Mol. Biol. Cell, 13, pp. 1501-1511, May 2002.
24. Nezi, L., et al. “Accumulation of Mad2-Cdc20 complex during spindle checkpoint activation requires binding of open and closed conformers of Mad2 in Saccharomyces cerevisiae”, J. Cell Biol., 174, pp. 39-51, July 2006.
25. Mapelli, M., et al. “The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint”, Cell, 131, pp. 730-743, November 2007.
26. Yang, M., et al. “Insights into mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric mad2 dimer”, PLoS Biol., 6, e50, March 2008.
27. Lad, L., et al. “Kinetic analysis of Mad2-Cdc20 formation: conformational changes in Mad2 are catalyzed by a C-Mad2-ligand complex.” Biochemistry, 48, pp. 9503-9515, October 2009.
28. Luo, X., et al. “The Mad2 spindle checkpoint protein has two distinct natively folded states”, Nat. Struct. Mol. Biol., 11, pp. 338-345, April 2004.
29. Burton, J. L. and Solomon, M.J. “Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint.”, Genes Dev., 21, pp. 655-667. March 2007.
30. Izawa D. and Pines J. “Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation.”, J. Cell Biol., 199, pp. 27-37, October 2012.
31. Pan, J. and Chen, R. H. “Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae”, Genes Dev., 18, pp. 1439-1451, Jun 2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top