跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭國璋
研究生(外文):Kuo-Chang Cheng
論文名稱:利用定點突變方法研究綠豆防禦素第一型的結構片段對抑制昆蟲α-澱粉水解酶功能的影響
論文名稱(外文):Site-Directed Mutagenesis Studies of Potential Structural Element of Vigna radiata Plant Defensin 1 Involved in Inhibiting Insect α-Amylase
指導教授:呂平江
指導教授(外文):Ping-Chiang Lyu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:56
中文關鍵詞:綠豆防禦素第一型麵包蟲α-澱粉水解酶
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
綠豆防禦素第一型 (VrD1) 是第一個被報導具有抵抗豆象的植物防禦素。我們實驗室已經利用核磁共振光譜儀解出綠豆防禦素第一型之三度空間立體結構。然而,其殺蟲機制仍不清楚。根據先前的研究結果顯示,綠豆防禦素第一型具有抑制麵包蟲α-澱粉水解酶的能力,推測此抑制功能極可能與其抗蟲機制有關。同時以電腦模擬計算結果顯示,在綠豆防禦素第一型與麵包蟲α-澱粉水解酶的複合結構中,綠豆防禦素第一型的第三環型結構 (loop 3),推測與其抑制能力息息相關。在所有已知植物防禦素的結構中,綠豆防禦素第一型是第一個具有310 螺旋結構的例子。根據蛋白質序列比對分析,不同於其他植物防禦素,在第26個胺基酸位置,綠豆防禦素第一型是由精胺酸取代麩胺酸,而此結果可能造成第10個胺基酸位置色胺酸其支鏈的方向改變,因而誘發310 螺旋結構形成,進而促進綠豆防禦素第一型整體結構的穩定。在此論文中,我們主要針對第三環型結構與310 螺旋結構之形成對於��-澱粉水解酶抑制能力之影響。利用定點突變分析方法來研究綠豆防禦素第一型中對於抑制麵包蟲��-澱粉水解酶有重要影響的胺基酸。並且進一步地利用圓二光偏極光譜儀來分析純化之突變綠豆防禦素第一型的二級結構。實驗結果顯示數個突變綠豆防禦素第一型抑制麵包蟲α-澱粉水解酶的能力有明顯降低,證明第三環型結構與310 螺旋結構在其抑制功能上,扮演重要角色。
Vigna radiata plant defensin 1 (VrD1) is the first reported plant defensin exhibiting insecticidal activity against Callosobruchus chinensis (bruchid). Three dimensional structure of VrD1 has been determined by nuclear magnetic resonance spectroscopy in our laboratory. Nevertheless, the mechanism of insecticidal activity is unclear. According to our previous work, VrD1 has shown to inhibit Tenebrio molitor α-amylase (TMA) in vitro which may trigger insecticidal activity. Computational docking model of VrD1-TMA complex also implied that loop L3 of VrD1 is important for this inhibition. Among plant defensins of known structure, VrD1 is the first case containing a 310 helix. Based on protein sequence alignments, VrD1 is different from other defensins and contains an arginine in place of glutamate at the residue 26. We propose that this residue may induce a shift in the orientation of Trp10, thereby facilitating the 310 helix formation and then contributing to the stability of global structure. Therefore, this study would focuse on the influence of loop L3 and 310 helix of VrD1 on its inhibitory function. Site-directed mutagenesis was carried out to study critical residues of VrD1 involving in TMA inhibitory activity. The secondary structures of purified proteins were examined by circular dichroism (CD). Our results showed that several mutants significantly decreased in TMA inhibition, indicating that the loop L3 and 310 helix indeed play important roles in VrD1 insecticidal function.
Contents 1
Abstract 3
中文摘要 4
Abbreviations 5
Chapter 1. Introduction 6
1.1 Plant Defensins 6
1.2 Vigna radiata plant defensin 1(VrD1) 7
1.3 Tenebrio molitor α-amylase (TMA) 8
1.4 The theme of this thesis 9
Chapter 2. Materials and Methods 11
2.1 Materials 11
2.2 Construction of expression plasmids of recombinant VrD1 11
2.3 Expression and purification of rVrD1 12
2.4 Purification and activity assay of α-amylase from T. molitor larvae 13
2.5 Mass spectrometry 15
2.6 Assay of inhibitory function of VrD1 against TMA 15
2.7 Circular dichroism (CD) spectra 16
2.8 Fluorescence spectroscopy 17
2.9 Protein concentration 18
Chapter 3. Results and Discussion 19
3.1 Purification of rVrD1 19
3.2 Purification of TMA 19
3.3 Target selection for site-directed mutagenesis 20
3.4 Characterization of VrD1 variants 21
3.5 Effects of VrD1 mutants on TMA activities 22
3.6 Fluorescence of intrinsic tryptophan of VrD1 23
Chapter 4. Conclusion 25








Contents of Tables and Figures

Table 1. Molecular weight of VrD1 mutants 27
Table2. Summary of biophysical properties 28
Table 3. Sequence of oligonucleotides used for PCR and site-directed mutagenesis. 29
Figure 1: Solution structure of VrD1 (PDB code: 1TI5). 30
Figure 2: 3-D structure of TMA (PDB code:1JAE). 31
Figure 3: Sequence alignment of various plant defensin. 32
Figure 4: The mutated residues in the structural element of VrD1. 33
Figure 5: Construction of the expression system. 34
Figure 6: Protein purification was analyzed by SDS-PAGE. 35
Figure 7: RP-HPLC profile of rVrD1. 36
Figure 8: VrD1 mutants were analyzed by Tricine-SDS-PAGE. 37
Figure 9: Identification by ESI-MS spectroscopy. 38
Figure 10: Flowchart for TMA purification. 39
Figure 11: Purification of TMA on FPLC system. 40
Figure 12: TMA purification was analyzed by SDS-PAGE. 41
Figure 13: Determination of activity unit of purified TMA 42
Figure 14: The titration curve of the VrD1 mutants. 43
Figure 15: The inhibitory activity of the VrD1 variants. 44
Figure 16: Far-UV CD spectra of wild-type and mutant proteins. 45
Figure 17: The thermal stability of wild-type and mutant proteins. 46
Figure 18: The procedure of insect α-amylase inhibitory assay. 47
Figure 19: Computational docking analysis of TMA-VrD1 complex. 48
Figure 20: Fluorescence of intrinsic tryptophan of VrD1 variants involving 310 helix formation. 49
Figure 21: Intramolecular interactions between Trp10 and other residues in VrD1 50
References 51
(1) Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., & Wood,, and B., J. (1968) Principles of microbiology and immunology. New York: Harper International.
(2) Broekaert, W. F., Terras, F. R., Cammue, B. P., and Osborn, R. W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108, 1353-8.
(3) Thomma, B. P., Cammue, B. P., and Thevissen, K. (2002) Plant defensins. Planta 216, 193-202.
(4) Osorio e Castro, V. R., and Vernon, L. P. (2003) Stimulation of prothrombinase activity by the nonapeptide Thr-Trp-Ala-Arg-Asn-Ser-Tyr-Asn-Val, a segment of a plant thionin. Peptides 24, 515-21.
(5) Melo, F. R., Rigden, D. J., Franco, O. L., Mello, L. V., Ary, M. B., Grossi de Sa, M. F., and Bloch, C., Jr. (2002) Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins 48, 311-9.
(6) Titarenko, E., Lopez-Solanilla, E., Garcia-Olmedo, F., and Rodriguez-Palenzuela, P. (1997) Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco. J Bacteriol 179, 6699-704.
(7) Bloch, C., Jr., Patel, S. U., Baud, F., Zvelebil, M. J., Carr, M. D., Sadler, P. J., and Thornton, J. M. (1998) 1H NMR structure of an antifungal gamma-thionin protein SIalpha1: similarity to scorpion toxins. Proteins 32, 334-49.
(8) Florack, D. E., and Stiekema, W. J. (1994) Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol 26, 25-37.
(9) Kushmerick, C., de Souza Castro, M., Santos Cruz, J., Bloch, C., Jr., and Beirao, P. S. (1998) Functional and structural features of gamma-zeathionins, a new class of sodium channel blockers. FEBS Lett 440, 302-6.
(10) Thevissen, K., Ghazi, A., De Samblanx, G. W., Brownlee, C., Osborn, R. W., and Broekaert, W. F. (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271, 15018-25.
(11) Janssen, B. J., Schirra, H. J., Lay, F. T., Anderson, M. A., and Craik, D. J. (2003) Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry 42, 8214-22.
(12) Cornet, B., Bonmatin, J. M., Hetru, C., Hoffmann, J. A., Ptak, M., and Vovelle, F. (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3, 435-48.
(13) Broekaert, W. F. C. B., De Bolle MFC, Thevissen K, De Samblanx GW, Osborn RW. (1997) Antimicrobial peptides in plants. Crit Rev. Plant Sci 16, 297-323.
(14) Osborn, R. W., De Samblanx, G. W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S. B., and Broekaert, W. F. (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368, 257-62.
(15) Segura, A., Moreno, M., Molina, A., and Garcia-Olmedo, F. (1998) Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett 435, 159-62.
(16) Liu, Y. J., Cheng, C. S., Lai, S. M., Hsu, M. P., Chen, C. S., and Lyu, P. C. (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 63, 777-86.
(17) Chen, K. C., Lin, C. Y., Kuan, C. C., Sung, H. Y., and Chen, C. S. (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50, 7258-63.
(18) Kuan-Chung Chen, C.-Y. L., Mei-Chu Chung, Cheng-Chun Kuan, Hsien-Yi Sung, Samson, and C.S. Tsou, C. G. K., and Ching-San Chen. (2002) Cloning and characterization of a cDNA encoding an antimicrobial protein from mung bean seeds. Bot. Bull. Acad. Sin. 43, 251-259.
(19) Shiau, Y. S., Horng, S. B., Chen, C. S., Huang, P. T., Lin, C., Hsueh, Y. C., and Lou, K. L. (2006) Structural analysis of the unique insecticidal activity of novel mungbean defensin VrD1 reveals possibility of homoplasy evolution between plant defensins and scorpion neurotoxins. J Mol Recognit 19, 441-50.
(20) Strobl, S., Gomis-Ruth, F. X., Maskos, K., Frank, G., Huber, R., and Glockshuber, R. (1997) The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS Lett 409, 109-14.
(21) Buonocore, V., and Poerio, E. (1976) Interaction of Tenebrio molitor L. alpha-amylase with a wheat flour protein inhibitor. FEBS Lett 67, 202-6.
(22) Srivastava, U. S. S., P. D. (1961) On the hydrogen-ion concentration in the alimentary canal of the coleoptera. Beitr. Entemol. 11, 15-20.
(23) Nahoum, V., Farisei, F., Le-Berre-Anton, V., Egloff, M. P., Rouge, P., Poerio, E., and Payan, F. (1999) A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae alpha-amylase in complex with the bean Phaseolus vulgaris inhibitor. Acta Crystallogr D Biol Crystallogr 55, 360-2.
(24) Pereira, P. J., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S., and Strobl, S. (1999) Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 Å resolution. Structure 7, 1079-88.
(25) Strobl, S., Maskos, K., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) A novel strategy for inhibition of alpha-amylases: yellow meal worm alpha-amylase in complex with the Ragi bifunctional inhibitor at 2.5 Å resolution. Structure 6, 911-21.
(26) Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) Crystal structure of yellow meal worm alpha-amylase at 1.64 Å resolution. J Mol Biol 278, 617-28.
(27) Machius, M., Wiegand, G., and Huber, R. (1995) Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 Å resolution. J Mol Biol 246, 545-59.
(28) Qian, M., Haser, R., Buisson, G., Duee, E., and Payan, F. (1994) The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2 Å resolution. Biochemistry 33, 6284-94.
(29) Wiegand, G., Epp, O., and Huber, R. (1995) The crystal structure of porcine pancreatic alpha-amylase in complex with the microbial inhibitor Tendamistat. J Mol Biol 247, 99-110.
(30) Machius, M., Vertesy, L., Huber, R., and Wiegand, G. (1996) Carbohydrate and protein-based inhibitors of porcine pancreatic alpha-amylase: structure analysis and comparison of their binding characteristics. J Mol Biol 260, 409-21.
(31) Sogaard, M., Kadziola, A., Haser, R., and Svensson, B. (1993) Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. J Biol Chem 268, 22480-4.
(32) Takase, K. (1994) Site-directed mutagenesis reveals critical importance of the catalytic site in the binding of alpha-amylase by wheat proteinaceous inhibitor. Biochemistry 33, 7925-30.
(33) Young, L., and Dong, Q. (2004) Two-step total gene synthesis method. Nucleic Acids Res 32, e59.
(34) Khalil E, V. L., Andre L, Helene R, Didier M. (2004) A bacterial expression system revised for the recombinant production of cystine-rich plant lipid transfer proteins. Biochem Biophys Res Commun 316, 1202-1209.
(35) Landon. (1977) Cleavage at aspartyl-prolyl bonds. Methods Enzymol 47, 145-9.
(36) Buonocore, V., Poerio, E., Silano, V., and Tomasi, M. (1976) Physical and catalytic properties of alpha-amylase from Tenebrio molitor L. larvae. Biochem J 153, 621-5.
(37) Kazzazi, M., Bandani, A. R., Ashuri, A., and Hosseinkhani, S. (2005) A amylase activity of nymphal stages of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Commun Agric Appl Biol Sci 70, 863-7.
(38) Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., and Kallenbach, N. R. (1991) The helix-coil transition in heterogeneous peptides with specific side-chain interactions: theory and comparison with CD spectral data. Biopolymers 31, 1605-14.
(39) Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85.
(40) Lin, K. F., Lee, T. R., Tsai, P. H., Hsu, M. P., Chen, C. S., and Lyu, P. C. (2007) Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins 68, 530-540.
(41) Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-34.
(42) Vivian, J. T., and Callis, P. R. (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80, 2093-109.
(43) Beechem, J. M., and Brand, L. (1985) Time-resolved fluorescence of proteins. Annu Rev Biochem 54, 43-71.
(44) Eftink, M. R. (1991) Fluorescence techniques for studying protein structure. Methods Biochem Anal 35, 127-205.
(45) Lakowicz, J. (1999) Principles of Fluorescence Spectroscopy. . Plenum, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top