|
(1) Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S., & Wood,, and B., J. (1968) Principles of microbiology and immunology. New York: Harper International. (2) Broekaert, W. F., Terras, F. R., Cammue, B. P., and Osborn, R. W. (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108, 1353-8. (3) Thomma, B. P., Cammue, B. P., and Thevissen, K. (2002) Plant defensins. Planta 216, 193-202. (4) Osorio e Castro, V. R., and Vernon, L. P. (2003) Stimulation of prothrombinase activity by the nonapeptide Thr-Trp-Ala-Arg-Asn-Ser-Tyr-Asn-Val, a segment of a plant thionin. Peptides 24, 515-21. (5) Melo, F. R., Rigden, D. J., Franco, O. L., Mello, L. V., Ary, M. B., Grossi de Sa, M. F., and Bloch, C., Jr. (2002) Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins 48, 311-9. (6) Titarenko, E., Lopez-Solanilla, E., Garcia-Olmedo, F., and Rodriguez-Palenzuela, P. (1997) Mutants of Ralstonia (Pseudomonas) solanacearum sensitive to antimicrobial peptides are altered in their lipopolysaccharide structure and are avirulent in tobacco. J Bacteriol 179, 6699-704. (7) Bloch, C., Jr., Patel, S. U., Baud, F., Zvelebil, M. J., Carr, M. D., Sadler, P. J., and Thornton, J. M. (1998) 1H NMR structure of an antifungal gamma-thionin protein SIalpha1: similarity to scorpion toxins. Proteins 32, 334-49. (8) Florack, D. E., and Stiekema, W. J. (1994) Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol 26, 25-37. (9) Kushmerick, C., de Souza Castro, M., Santos Cruz, J., Bloch, C., Jr., and Beirao, P. S. (1998) Functional and structural features of gamma-zeathionins, a new class of sodium channel blockers. FEBS Lett 440, 302-6. (10) Thevissen, K., Ghazi, A., De Samblanx, G. W., Brownlee, C., Osborn, R. W., and Broekaert, W. F. (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271, 15018-25. (11) Janssen, B. J., Schirra, H. J., Lay, F. T., Anderson, M. A., and Craik, D. J. (2003) Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry 42, 8214-22. (12) Cornet, B., Bonmatin, J. M., Hetru, C., Hoffmann, J. A., Ptak, M., and Vovelle, F. (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3, 435-48. (13) Broekaert, W. F. C. B., De Bolle MFC, Thevissen K, De Samblanx GW, Osborn RW. (1997) Antimicrobial peptides in plants. Crit Rev. Plant Sci 16, 297-323. (14) Osborn, R. W., De Samblanx, G. W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S. B., and Broekaert, W. F. (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368, 257-62. (15) Segura, A., Moreno, M., Molina, A., and Garcia-Olmedo, F. (1998) Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett 435, 159-62. (16) Liu, Y. J., Cheng, C. S., Lai, S. M., Hsu, M. P., Chen, C. S., and Lyu, P. C. (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 63, 777-86. (17) Chen, K. C., Lin, C. Y., Kuan, C. C., Sung, H. Y., and Chen, C. S. (2002) A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem 50, 7258-63. (18) Kuan-Chung Chen, C.-Y. L., Mei-Chu Chung, Cheng-Chun Kuan, Hsien-Yi Sung, Samson, and C.S. Tsou, C. G. K., and Ching-San Chen. (2002) Cloning and characterization of a cDNA encoding an antimicrobial protein from mung bean seeds. Bot. Bull. Acad. Sin. 43, 251-259. (19) Shiau, Y. S., Horng, S. B., Chen, C. S., Huang, P. T., Lin, C., Hsueh, Y. C., and Lou, K. L. (2006) Structural analysis of the unique insecticidal activity of novel mungbean defensin VrD1 reveals possibility of homoplasy evolution between plant defensins and scorpion neurotoxins. J Mol Recognit 19, 441-50. (20) Strobl, S., Gomis-Ruth, F. X., Maskos, K., Frank, G., Huber, R., and Glockshuber, R. (1997) The alpha-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS Lett 409, 109-14. (21) Buonocore, V., and Poerio, E. (1976) Interaction of Tenebrio molitor L. alpha-amylase with a wheat flour protein inhibitor. FEBS Lett 67, 202-6. (22) Srivastava, U. S. S., P. D. (1961) On the hydrogen-ion concentration in the alimentary canal of the coleoptera. Beitr. Entemol. 11, 15-20. (23) Nahoum, V., Farisei, F., Le-Berre-Anton, V., Egloff, M. P., Rouge, P., Poerio, E., and Payan, F. (1999) A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae alpha-amylase in complex with the bean Phaseolus vulgaris inhibitor. Acta Crystallogr D Biol Crystallogr 55, 360-2. (24) Pereira, P. J., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S., and Strobl, S. (1999) Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 Å resolution. Structure 7, 1079-88. (25) Strobl, S., Maskos, K., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) A novel strategy for inhibition of alpha-amylases: yellow meal worm alpha-amylase in complex with the Ragi bifunctional inhibitor at 2.5 Å resolution. Structure 6, 911-21. (26) Strobl, S., Maskos, K., Betz, M., Wiegand, G., Huber, R., Gomis-Ruth, F. X., and Glockshuber, R. (1998) Crystal structure of yellow meal worm alpha-amylase at 1.64 Å resolution. J Mol Biol 278, 617-28. (27) Machius, M., Wiegand, G., and Huber, R. (1995) Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 Å resolution. J Mol Biol 246, 545-59. (28) Qian, M., Haser, R., Buisson, G., Duee, E., and Payan, F. (1994) The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2 Å resolution. Biochemistry 33, 6284-94. (29) Wiegand, G., Epp, O., and Huber, R. (1995) The crystal structure of porcine pancreatic alpha-amylase in complex with the microbial inhibitor Tendamistat. J Mol Biol 247, 99-110. (30) Machius, M., Vertesy, L., Huber, R., and Wiegand, G. (1996) Carbohydrate and protein-based inhibitors of porcine pancreatic alpha-amylase: structure analysis and comparison of their binding characteristics. J Mol Biol 260, 409-21. (31) Sogaard, M., Kadziola, A., Haser, R., and Svensson, B. (1993) Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. J Biol Chem 268, 22480-4. (32) Takase, K. (1994) Site-directed mutagenesis reveals critical importance of the catalytic site in the binding of alpha-amylase by wheat proteinaceous inhibitor. Biochemistry 33, 7925-30. (33) Young, L., and Dong, Q. (2004) Two-step total gene synthesis method. Nucleic Acids Res 32, e59. (34) Khalil E, V. L., Andre L, Helene R, Didier M. (2004) A bacterial expression system revised for the recombinant production of cystine-rich plant lipid transfer proteins. Biochem Biophys Res Commun 316, 1202-1209. (35) Landon. (1977) Cleavage at aspartyl-prolyl bonds. Methods Enzymol 47, 145-9. (36) Buonocore, V., Poerio, E., Silano, V., and Tomasi, M. (1976) Physical and catalytic properties of alpha-amylase from Tenebrio molitor L. larvae. Biochem J 153, 621-5. (37) Kazzazi, M., Bandani, A. R., Ashuri, A., and Hosseinkhani, S. (2005) A amylase activity of nymphal stages of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Commun Agric Appl Biol Sci 70, 863-7. (38) Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., and Kallenbach, N. R. (1991) The helix-coil transition in heterogeneous peptides with specific side-chain interactions: theory and comparison with CD spectral data. Biopolymers 31, 1605-14. (39) Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85. (40) Lin, K. F., Lee, T. R., Tsai, P. H., Hsu, M. P., Chen, C. S., and Lyu, P. C. (2007) Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins 68, 530-540. (41) Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-34. (42) Vivian, J. T., and Callis, P. R. (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80, 2093-109. (43) Beechem, J. M., and Brand, L. (1985) Time-resolved fluorescence of proteins. Annu Rev Biochem 54, 43-71. (44) Eftink, M. R. (1991) Fluorescence techniques for studying protein structure. Methods Biochem Anal 35, 127-205. (45) Lakowicz, J. (1999) Principles of Fluorescence Spectroscopy. . Plenum, New York.
|