|
參考文獻 [1]A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38. [2]林欣瑜,氫新光綠能-水分解光觸媒技術,科學發展,五零八期 (2015) [3]http://photocatalyst.holisticphysio.com/mechanism.html. [4]http://scitechvista.most.gov.tw/zh-tw/articles/c/0/1/10/1/432.htm. [5]S. N. Franka and J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder, J. Am. Chem. Soc., 1997, 99, 303-304. [6]http://scitechvista.most.gov.tw/zh-tw/articles/c/0/1/10/1/709.htm. [7]http://www.enedu.org.tw/Technology/?id=4. [8]A. Kudo and H. Kato, Strategies for the development of visible-light driven photo catalysts for water splitting, Chem. Lett., 2004, 33, 1534-1539. [9]A. L. Linsebigler, G. Lu and J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 1995, 95, 735-758. [10]Y. Wen, H. Ding and Y. Shan, Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite, Nanoscale, 2011, 3, 4411-4417. [11]Y. Yang, E. Liu, H. Dai, L. Kang, H. Wu, J. Fan, X. Hu and H. Liu, Photocatalytic activity of Ag-TiO2-graphene ternary nanocomposites and application in hydrogen evolution by water splitting, Int. J. Hydrogen Energy, 2014, 39, 7664-7671. [12]F. Wu, J. Fan, X. Hu, E. Liu, T. Sun and L. Kang, Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting, Plasmonics, 2012, 8, 501-508. [13]D. L. Jeanmaire and R. P. V. Duyne, Surface raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem., 1977, 84, 1, 1-20. [14]C. He, Y. Yu, X. Hu and A. Larbot, Influence of silver doping on the photocatalytic activity of titania films, Appl. Surf. Sci., 2002, 200, 239-247. [15]R. Liu, P. Wang, X. Wang, H. Yu, and J. Yu, UV- and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)-TiO2 photocatalyst, J. Phys. Chem., 2012, 116, 17721−17728. [16]Y. Zhao, L. Sun, M. Xi, Q. Feng, C. Jiang and H. Fong, Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced raman scattering, ACS Appl. Mater., 2014, 6, 5759−5767. [17]L. Sun, C. Wang, S. Li, Y. Lai, H. Chen and C. Lin, Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity, J. Hazard. Mater., 2008, 171, 1045-1050. [18]C. V. Raman and K. S. Krishnan, A new type of secondary radiation, Nature, 1928, 121, 501-502. [19]M. G. Albrecht and J. A. Creighton, Anomalously intense raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 1977, 99, 15, 5215-5217. [20]J. X. Fang, S. Y. Du, S. Lebedkin, Z. Y. Li, R. Kruk and H. Hahn, Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced raman spectroscopy, Nano Lett., 2010, 10, 5006−5013. [21]C. L. Haynes, A. D. McFarland and R. P. V. Duyne, Surface-enhanced Raman spectroscopy, Anal. Chem., 2005, 77, 338−346. [22]M. S. Nie and S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced raman scattering, Science, 1997, 275, 1102−1106. [23]B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe and R. P. V. Duyne, SERS: materials, applications, and the future, Mater. Today, 2012, 15, 16−25. [24]邱國斌&蔡定平,金屬表面電漿簡介,物理雙月刊,廿八卷二期 (2006) [25]W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424, 6950, 824-830. [26]K. L. Kelly, E. Coronado and L. L. Zhao, The optical properties of metal nanoparticles, the influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107, 3, 668-677. [27]S. T. Kochuveedu, D. P. Kim and D. H. Kim, Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration, J. Phys. Chem. C, 2012, 116, 2500−2506. [28]S. T. Sun and P. Y. Wu, Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets, Phys. Chem. Chem. Phys., 2011, 13, 21116−21120. [29]A. K. Geim and K. S. Novoselov, The rise of graphene, Nat Mater., 2007, 6, 183-191. [30]A. K. Geim, Graphene: status and prospects, Science, 2009, 324, 1530-1534. [31]M. J. Allen, V. C. Tung and R. B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev, 2010, 110, 132-145. [32]J. S. Bunch, A. M. Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum and J. M. Parpia, Electromechanical resonators from graphene sheets, Science, 2007, 315, 490-493. [33]N. Zhang, Y. Zhang and Y. J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives, Nanoscale, 2012, 4, 5792−5813. [34]D. Chen, H. Zhang, Y. Liu and J. Li, Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ Sci., 2013, 6, 1362−1387. [35]S. Guo and S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 2011, 40, 2644−2672. [36]Y. Sun, Q. Wu and G. Shi, Graphene based new energy materials, Science, 2011, 4, 1113−1132. [37]S. Liu, M. Q. Yang and Y. J. Xu, Surface charge promotes the synthesis of large, flat structured graphene-(CdS nanowire)-TiO2 nanocomposites as versatile visible light photocatalysts, J. Mater. Chem. A, 2014, 2, 430−440. [38]X. Li, X. Wang, L. Zhang , S. Lee and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, 2008, 319, 1229-1232. [39]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney and E. A. Stach, Graphene-based composite materials, Nature, 2006, 442, 282-286. [40]D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett and G. Evmenenko, Preparation and characterization of graphene oxide paper, Nature, 2007, 448, 457-460. [41]H. Zhang, X. J. Lv, Y. M. Li, Y. Wang and J. H. Li, P25-Graphene composite as a high performance photocatalyst, ACS Nano, 2010, 4, 380-386. [42]P. V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett., 2009, 1, 520−527. [43]Q. Xiang, J. Yu and M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 2012, 41, 782−796. [44]X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang and Z. Fan, Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts, ACS Appl. Mater. Interfaces, 2012, 4, 3944−3950. [45]P. Zhu, A. S. Nair, P. Shengjie, Y. Shengyuan and S. Ramakrishna, Facile fabrication of TiO2−graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning, ACS Appl. Mater. Interfaces, 2012, 4, 581−585. [46]M. Q. Yang, N. Zhang and Y. J. Xu, Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study, ACS Appl. Mater., 2013, 5, 1156−1164. [47]Z. Mou, Y. Wu, J. Sun, P. Yang, Y. Du and C. Lu, TiO2 Nanoparticles-functionalized N‑doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation, ACS Appl. Mater., 2014, 6, 13798−13806. [48]K. C. Hsu and D. H. Chen, Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide, ACS Appl. Mater., 2015, 49, 27571–27579. [49]G. F. Huang, Z. L. Ma, W. Q. Huang, Y. Tian, C. Jiao, Z. M. Yang, Z. Wan and A. Pan, Semiconductor photocatalyst: possibilities and challenges, Chem. Commun., 2013, 49, 636–638. [50]H. Y. Hu, Z. B. Jiao, H. C. Yu, G. X. Lu, J. H. Ye and Y. P. Bi, Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties, J. Mater. Chem. A, 2013, 2387–2390. [51]Y. P. Bi, H. Y. Hu, S. X. Ouyang, G. X. Lu, J. Y. Cao and J. H. Ye, Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges, Chem. Commun., 2012, 48, 3748–3750. [52]Y. P. Bi, H. Y. Hu, Z. B. Jiao, H. C. Yu, G. X. Lu and J. H. Ye, Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties, Phys. Chem. Chem. Phys., 2012, 14, 14486–14488. [53]Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. S. Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu and R. L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater., 2010, 9, 559–564. [54]Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye and J. Am, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, Chem. Soc., 2011, 133, 6490–6492. [55]X. H. Yan, Q. X. Gao, J. L. Qin, X. F. Yang, Y. Li and H. Tang, Photoluminescence and photocatalytic properties of Ag3PO4 microcrystals: an experimental and theoretical investigation, Ceram. Int., 2013, 39, 9715–9720. [56]嚴學華&高慶俠,磷酸銀光催化研究進展,四十卷十期 (2013) [57]X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang and H. Tang, Fabrication of Ag3PO4‑graphene composites with highly efficient and stable visible light photocatalytic performance, ACS Catal., 2013, 3, 363−369. [58]B. Chai, J. Li and Q. Xu, Reduced graphene oxide grafted Ag3PO4 composites with efficient photocatalytic activity under visible-light irradiation, Ind. Eng. Chem. Res., 2014, 53, 8744−8752. [59]Q. Xiang, D. Lang, T. Shen and F. Liu, Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability, Appl. Catal. B, 2015, 162, 196–203. [60]X. Yang, J. Qin, Y. Jiang, K. Chen, X. Yan, D. Zhang, R. Li and H. Tang, Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria, Appl. Catal. B, 2015, 166, 231–240. [61]K. V. Kumar, K. Porkodi and F. Rocha, Langmuir–hinshelwood kinetics– a theoretical study, Catal. Commun., 2008, 9, 82–84. [62]Y. Zhang, N. Zhang, Z. R. Tangb and Y. J. Xu, Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact, Phys. Chem. Chem. Phys., 2012, 14, 9167-9175. [63]O. Akhavan, M. Abdolahad, A. Esfandiar and M. Mohatashamifar, Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction, J. Phys. Chem. C, 2010, 114, 12955-12959. [64]S. A. S. Shah, K. Zhang, A. R. Park, K. S. Kim and N. G. Park, Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity, Nanoscale, 2013, 5, 5093-50101. [65]W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan and Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Appl. Catal. B, 2007, 69, 138-144. [66]X. Pan, M. Q. Yang, Z. R. Tang and Y. J. Xu, Noncovalently functionalized graphene-directed synthesis of ultralarge graphene-based TiO2 nanosheet composites: tunable morphology and photocatalytic applications, J. Phys. Chem. C, 2014, 118, 27325-27335. [67]T. D. N. Phan, S. Luo, Z. Liu, A. D. Gamalski, J. Tao, W. Xu, E. A. Stach, D. E. Polyansky, S. D. Senanayake, E. Fujita and J. A. Rodriguez, Striving toward noble-metal-free photocatalytic water splitting: the hydrogenated-graphene-TiO2 prototype, Chem. Mater., 2015, 27, 6282−6296. [68]A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles, J. Am. Chem. Soc., 2007, 129, 14852-14853. [69]Y. Tian and T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, J. Am. Chem. Soc., 2005, 127, 7632-7637. [70]X. Hu, Q. Zhu, X. Wang, N. Kawazoe and Y. Yang, Nonmetal–metal–semiconductor-promoted P/Ag/Ag2O/Ag3PO4/TiO2 photocatalyst with superior photocatalytic activity and stability, J. Mater. Chem. A, 2015, 3, 17858–17865.
|