跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許富傑
研究生(外文):Fu-Jye Sheu
論文名稱:銀/二氧化鈦/石墨烯和磷酸銀/二氧化鈦/氧化石墨烯三元奈米複合物光觸媒之光催化特性研究
論文名稱(外文):Investigation on Photocatalytic Characteristics of Ag-TiO2-graphene and Ag3PO4-TiO2-graphene oxide Ternary Nanocomposite Photocatalysts
指導教授:卓君珮
指導教授(外文):Chun-Pei Cho
口試委員:鄭淑華陳佳吟
口試委員(外文):Shu-Hua ChengChia-Ying Chen
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用材料及光電工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:95
中文關鍵詞:石墨烯二氧化鈦光觸媒光降解磷酸銀氧化石墨烯水分解產氫
外文關鍵詞:Graphenesilvertitanium dioxidephotocatalystphotodegradationsilver phosphategraphene oxidehydrogen production from water splitting
相關次數:
  • 被引用被引用:1
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用光催化還原法製備銀/二氧化鈦/石墨烯(ATG)及離子交換法製備磷酸銀/二氧化鈦/氧化石墨烯(APTGO)三元奈米複合物光觸媒。我們分別調整ATG中石墨烯和銀的含量,也調整了APTGO中磷酸銀和二氧化鈦的莫耳比,並進行材料特性、光催化活性分析,以及光降解機制之探討。
當ATG中石墨烯越多,可見光吸收增加,電荷傳輸效率提高,有利於光降解和水分解產氫。ATG中二氧化鈦和石墨烯之最佳混合比例為5:1。當銀越多,可見光吸收也增加,界面阻抗降低,導電性提高,且銀奈米粒子引起的表面增強拉曼散射效應亦有助於提升光催化活性。然而,過量的銀減少光觸媒之比表面積,反而造成光吸收降低、再結合機率增加,因此適量的銀才能更有效地提升光催化活性。不同二氧化鈦和石墨烯的混合比例下有不同的最佳銀含量,當最佳石墨烯與銀含量存在時,ATG才有最佳光催化效率,達最大產氫量4233 mole g-1,量子效率為26.2 %;此外,利用光催化還原法可以有效縮短ATG的製備時間,相較於水熱法的製備時間縮短4至22小時。
APTGO中二氧化鈦增加可提高光吸收,但同時也造成界面阻抗越大,電荷傳輸性質變差,且過量的二氧化鈦覆蓋於磷酸銀和氧化石墨烯表面會減少光觸媒之比表面積,降低整體光吸收度。適量的二氧化鈦才有利於提升光催化性能。實驗結果證明當APTGO中磷酸銀和二氧化鈦之莫耳比為0.6時有最佳二氧化鈦含量,此時光吸收度最大、光吸收範圍最廣,可得到最大產氫量1312 mole g-1,量子效率為8.13 %。

Abstract
In this study, photocatalytic reduction and ion exchange methods were employed to fabricate the ternary nanocomposite photocatalysts of Ag-TiO2-graphene (ATG) and Ag3PO4-TiO2-graphene oxide (APTGO), respectively. The contents of graphene and Ag in ATG were adjusted, and the molar ratio of Ag3PO4 to TiO2 in APTGO was tuned. The properties and photocatalytic activity of the nanocomposites were examined, and their photodegradation mechanisms were explored.
When an ATG had more graphene, light absorption and charge transport were enhanced, leading to higher efficiencies of photodegradation and hydrogen production from water splitting. It was proved that the optimum ratio between TiO2 and graphene was 5:1. More Ag contributed to light absorption and reduced impedance. The surface enhanced Raman scattering (SERS) effect induced by Ag nanoparticles was favorable to photocatalytic activity. However, excess Ag decreased the specific surfacearea of an ATG photocatalyst, and lower light absorption and increased recombination probability were thereby caused. Accordingly, an appropriate content of Ag was required so as to obtain more effective photocatalysis. Moreover, it was found that the optimum Ag content was different for a different mixing ratio between TiO2 and graphene. The best photocatalytic efficiency of ATG (max. hydrogen production 4233 mole g-1 and QE = 26.2 %) was achieved when graphene and Ag both existed optimal contens.
More TiO2 in APTGO improved light absorption but caused a larger impedance and inferior charge transport. Excess TiO2 distributed over the surfaces of Ag3PO4 and graphene oxide decreased the specific surface area and thus lower light absorbance of an APTGO photocatalyst. It has been evidenced that an appropriate TiO2 content was beneficial to enhance photocatalytic performance. Larger and wider light absorption and thereby highest photocatalytic efficiency of APTGO (max. hydrogen production 1312 mole g-1 and QE = 8.13 %) were achieved when the molar ratio of Ag3PO4 to TiO2 was 0.6.

目次
致謝辭 I
摘要 II
Abstract IV
目次 VI
圖目次 X
表目次 XIII
第一章 緒論 1
1.1 前言 1
1.2 光觸媒 1
1.3 產氫 3
1.4 研究動機 4
第二章 文獻回顧 6
2.1 二氧化鈦 6
2.2 二元奈米複合物 6
2.2.1 銀/二氧化鈦 7
2.2.1.1 銀的基本性質 7
2.2.1.2 銀應用於二元複合物 8
2.2.1.3 銀和二氧化鈦的協同作用 8
2.2.1.4 表面增強拉曼散射機制 9
2.2.2 二氧化鈦/石墨烯 11
2.2.2.1 石墨烯的基本性質 11
2.2.2.2 石墨烯和二氧化鈦的協同作用 12
2.2.2.3 石墨烯應用於二元複合物 12
2.3 三元奈米複合物 13
2.3.1 銀/二氧化鈦/石墨烯 13
2.3.2 磷酸銀/二氧化鈦/氧化石墨烯 13
2.3.2.1 磷酸銀的基本性質 13
2.3.2.2 磷酸銀應用於三元複合物 14
2.4 光催化反應動力模式 15
第三章 實驗步驟 17
3.1 藥品與材料 17
3.2 儀器設備 19
3.3 實驗方法 20
3.3.1 銀/二氧化鈦/石墨烯三元複合物的製備 20
3.3.1.1 改變石墨烯含量 21
3.3.1.2 改變銀含量 21
3.3.2 磷酸銀/二氧化鈦/氧化石墨烯三元複合物 21
3.3.3 光降解 23
3.3.3.1 光催化反應系統 23
3.3.3.2 檢量線之建立 23
3.3.3.3 甲基橙之穩定測試 23
3.3.3.4 甲基橙之光降解 25
3.3.4 光催化水分解產氫 25
3.3.5 抑菌測試 26
3.4 樣品之鑑定與特性分析 26
3.4.1 X射線繞射圖形 26
3.4.2 拉曼光譜 26
3.4.3 光電子能譜 27
3.4.4 紫外光可見光分光光譜儀 27
3.4.5 冷場發射掃描式電子顯微鏡 28
3.4.6 高分辨率穿透式電子顯微鏡 28
3.4.7 電化學分析 29
3.4.7.1 循環伏安法 30
3.4.7.2 交流阻抗頻譜法 31
3.4.8 氣相層析法 32
第四章 結果與討論 33
4.1 銀/二氧化鈦/石墨烯三元複合物 33
4.1.1 晶體結構 33
4.1.2 拉曼光譜 33
4.1.3 光電子能譜 38
4.1.4 表面形貌 42
4.1.5 微結構分析 42
4.1.6 吸收光譜 53
4.1.7 電化學特性 60
4.1.8 光催化降解 60
4.1.9 光降解機制 61
4.1.10 水分解產氫 64
4.2 磷酸銀/二氧化鈦/氧化石墨烯三元複合物 70
4.2.1 晶體結構 70
4.2.2 拉曼光譜 70
4.2.3 光電子能譜 70
4.2.4 表面形貌 73
4.2.5 微結構分析 73
4.2.6 吸收光譜 73
4.2.7 電化學特性 80
4.2.8 光催化降解 80
4.2.9 光降解機制 80
4.2.10 水分解產氫 81
4.2.11 抑菌測試 85
第五章 結論 87
參考文獻 88


圖目次
圖1-1 光催化水分解產氫反應機制示意圖 2
圖1-2 光觸媒分解有機物示意圖 5
圖2-1 金紅石和銳鈦礦之晶體結構 7
圖2-2 (a) 平坦金屬薄膜SPR示意圖;(b) 表面電漿垂直介面方向之電場分佈 10
圖2-3 金屬NPs表面電漿振盪示意圖 10
圖3-1 ATG三元複合物製備流程示意圖 22
圖3-2 APTGO三元複合物製備流程示意圖 22
圖3-3 光催化反應系統 24
圖3-4 水分解產氫裝置示意圖 24
圖3-5 三極裝置示意圖 29
圖3-6 工作電極示意圖 30
圖3-7 典型的Nyquist plot 31
圖4-1 氧化石墨之XRD圖形 34
圖4-2 A2.5TG(x)之XRD圖形 34
圖4-3 AyTG(10)之XRD圖形 35
圖4-4 AyTG(5)之XRD圖形 35
圖4-5 A2.5TG(x)之拉曼光譜:(a) 1000 cm-1至2000 cm-1,(b) 100 cm-1至800 cm-1 36
圖4-6 AyTG(10)之拉曼光譜:100 cm-1至2000 cm-1 37
圖4-7 AyTG(5)之拉曼光譜:100 cm-1至2000 cm-1 37
圖4-8 A2.5TG(x)之XPS能譜:(a) Ti 2p,(b) C 1s和(c) Ag 3d 39
圖4-9 AyTG(10)之XPS能譜:(a) Ti 2p,(b) C 1s和(c) Ag 3d 40
圖4-10 AyTG(5)之XPS能譜:(a) Ti 2p,(b) C 1s和(c) Ag 3d 41
圖4-11 A2.5TG(x)之SEM影像(倍率10 K):(a)氧化石墨,(b) x = 5,(c) x = 10,(d) x = 20,(e) x = 100和(d) x = 1000 43
圖4-12 AyTG(10)之SEM影像(倍率25 K):(a) y = 1,(b) y = 5,(c) y = 10,(d) y = 15和(e) y = 20 44
圖4-13 AyTG(10)之SEM影像(倍率50 K):(a) y = 1,(b) y = 5,(c) y = 10,(d) y = 15和(e) y = 20 45
圖4-14 AyTG(5)之SEM影像(倍率25 K):(a) y = 1,(b) y = 5,(c) y = 10,(d) y = 15和(e) y = 20 46
圖4-15 AyTG(5)之SEM影像(倍率50 K):(a) y = 1,(b) y = 5,(c) y = 10,(d) y = 15和(e) y = 20 47
圖4-16 A15TG(5)之元素分佈:(a) C,(b) O,(c) Ti和(d) Ag 48
圖4-17 A2.5TG(5):(a)~(c) TEM影像;(d) HRTEM微結構分析 49
圖4-18 A2.5TG(x):(a) UV-Vis吸收光譜,(b) Kubelka−Munk函數對光能之關係曲線 50
圖4-19 AyTG(10):(a) UV-Vis吸收光譜,(b) Kubelka−Munk函數對光能之關係曲線 51
圖4-20 AyTG(5):(a) UV-Vis吸收光譜,(b) Kubelka−Munk函數對光能之關係曲線 52
圖4-21 A2.5TG(x):(a) CV曲線,(b) Nyquist plots 54
圖4-22 AyTG(10):(a) CV曲線,(b) Nyquist plots 55
圖4-23 AyTG(5):(a) CV曲線,(b) Nyquist plots 56
圖4-24 A2.5TG(x):(a) MO光降解曲線,(b) 對應的反應速率常數 57
圖4-25 AyTG(10):(a) MO光降解曲線,(b) 對應的反應速率常數 58
圖4-26 AyTG(5):(a) MO光降解曲線,(b) 對應的反應速率常數 59
圖4-27 A2.5TG(5)之電洞與自由基捕捉測試 62
圖4-28 A10TG(10)之電洞與自由基捕捉測試 62
圖4-29 A15TG(5)之電洞與自由基捕捉測試 63
圖4-30 以ATG三元奈米複合物作為光觸媒之MO光降解機制圖 63
圖4-31 A2.5TG(x):(a) 產氫曲線,(b) 標準質量轉換效率和QE圖 67
圖4-32 AyTG(10):(a) 產氫曲線,(b) 標準質量轉換效率和QE圖 68
圖4-33 AyTG(5):(a) 產氫曲線,(b) 標準質量轉換效率和QE圖 69
圖4-34 APTGO之XRD圖形 71
圖4-35 APTGO之拉曼光譜:100 cm-1至2000 cm-1 71
圖4-36 APTGO之XPS能譜:(a) Ti 2p,(b) C 1s,(c) Ag 3d,(d) P 2p 72
圖4-37 APTGO-0.6之SEM影像,倍率:(a) 5 K,(b) 10 K和(c) 25 K 74
圖4-38 APTGO-0.6之元素分佈:(a) C,(b) O,(c) P,(d) Ti和(e) Ag 75
圖4-39 APTGO-0.6:(a)~(b) TEM影像;(c)~(d) HRTEM微結構分析 76
圖4-40 APTGO:(a) UV-Vis吸收光譜,(b) Kubelka−Munk函數對光能之關係曲線 77
圖4-41 APTGO:(a) CV曲線,(b) Nyquist plots 78
圖4-42 APTGO:(a) MO光降解曲線,(b) 對應的反應速率常數 79
圖4-43 APTGO-0.6之電洞與自由基捕捉測試 83
圖4-44 以APTGO三元奈米複合物作為光觸媒之MO降解機制圖 83
圖4-45 APTGO:(a) 產氫曲線,(b) 標準質量轉換效率和QE圖 84
圖4-46 APTGO之O. D. 600與時間關係圖 86
圖4-47 APTGO之細菌成長比率與時間關係圖 86



表目次
表3-1 藥品列表1 17
表3-2 藥品列表2 18
表3-3 儀器設備列表 19


參考文獻
[1]A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38.
[2]林欣瑜,氫新光綠能-水分解光觸媒技術,科學發展,五零八期 (2015)
[3]http://photocatalyst.holisticphysio.com/mechanism.html.
[4]http://scitechvista.most.gov.tw/zh-tw/articles/c/0/1/10/1/432.htm.
[5]S. N. Franka and J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at TiO2 powder, J. Am. Chem. Soc., 1997, 99, 303-304.
[6]http://scitechvista.most.gov.tw/zh-tw/articles/c/0/1/10/1/709.htm.
[7]http://www.enedu.org.tw/Technology/?id=4.
[8]A. Kudo and H. Kato, Strategies for the development of visible-light driven photo catalysts for water splitting, Chem. Lett., 2004, 33, 1534-1539.
[9]A. L. Linsebigler, G. Lu and J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 1995, 95, 735-758.
[10]Y. Wen, H. Ding and Y. Shan, Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite, Nanoscale, 2011, 3, 4411-4417.
[11]Y. Yang, E. Liu, H. Dai, L. Kang, H. Wu, J. Fan, X. Hu and H. Liu, Photocatalytic activity of Ag-TiO2-graphene ternary nanocomposites and application in hydrogen evolution by water splitting, Int. J. Hydrogen Energy, 2014, 39, 7664-7671.
[12]F. Wu, J. Fan, X. Hu, E. Liu, T. Sun and L. Kang, Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting, Plasmonics, 2012, 8, 501-508.
[13]D. L. Jeanmaire and R. P. V. Duyne, Surface raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem., 1977, 84, 1, 1-20.
[14]C. He, Y. Yu, X. Hu and A. Larbot, Influence of silver doping on the photocatalytic activity of titania films, Appl. Surf. Sci., 2002, 200, 239-247.
[15]R. Liu, P. Wang, X. Wang, H. Yu, and J. Yu, UV- and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)-TiO2 photocatalyst, J. Phys. Chem., 2012, 116, 17721−17728.
[16]Y. Zhao, L. Sun, M. Xi, Q. Feng, C. Jiang and H. Fong, Electrospun TiO2 nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced raman scattering, ACS Appl. Mater., 2014, 6, 5759−5767.
[17]L. Sun, C. Wang, S. Li, Y. Lai, H. Chen and C. Lin, Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity, J. Hazard. Mater., 2008, 171, 1045-1050.
[18]C. V. Raman and K. S. Krishnan, A new type of secondary radiation, Nature, 1928, 121, 501-502.
[19]M. G. Albrecht and J. A. Creighton, Anomalously intense raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 1977, 99, 15, 5215-5217.
[20]J. X. Fang, S. Y. Du, S. Lebedkin, Z. Y. Li, R. Kruk and H. Hahn, Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced raman spectroscopy, Nano Lett., 2010, 10, 5006−5013.
[21]C. L. Haynes, A. D. McFarland and R. P. V. Duyne, Surface-enhanced Raman spectroscopy, Anal. Chem., 2005, 77, 338−346.
[22]M. S. Nie and S. R. Emery, Probing single molecules and single nanoparticles by surface-enhanced raman scattering, Science, 1997, 275, 1102−1106.
[23]B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe and R. P. V. Duyne, SERS: materials, applications, and the future, Mater. Today, 2012, 15, 16−25.
[24]邱國斌&蔡定平,金屬表面電漿簡介,物理雙月刊,廿八卷二期 (2006)
[25]W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424, 6950, 824-830.
[26]K. L. Kelly, E. Coronado and L. L. Zhao, The optical properties of metal nanoparticles, the influence of size, shape, and dielectric environment, J. Phys. Chem. B, 2003, 107, 3, 668-677.
[27]S. T. Kochuveedu, D. P. Kim and D. H. Kim, Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration, J. Phys. Chem. C, 2012, 116, 2500−2506.
[28]S. T. Sun and P. Y. Wu, Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets, Phys. Chem. Chem. Phys., 2011, 13, 21116−21120.
[29]A. K. Geim and K. S. Novoselov, The rise of graphene, Nat Mater., 2007, 6, 183-191.
[30]A. K. Geim, Graphene: status and prospects, Science, 2009, 324, 1530-1534.
[31]M. J. Allen, V. C. Tung and R. B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev, 2010, 110, 132-145.
[32]J. S. Bunch, A. M. Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum and J. M. Parpia, Electromechanical resonators from graphene sheets, Science, 2007, 315, 490-493.
[33]N. Zhang, Y. Zhang and Y. J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives, Nanoscale, 2012, 4, 5792−5813.
[34]D. Chen, H. Zhang, Y. Liu and J. Li, Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ Sci., 2013, 6, 1362−1387.
[35]S. Guo and S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 2011, 40, 2644−2672.
[36]Y. Sun, Q. Wu and G. Shi, Graphene based new energy materials, Science, 2011, 4, 1113−1132.
[37]S. Liu, M. Q. Yang and Y. J. Xu, Surface charge promotes the synthesis of large, flat structured graphene-(CdS nanowire)-TiO2 nanocomposites as versatile visible light photocatalysts, J. Mater. Chem. A, 2014, 2, 430−440.
[38]X. Li, X. Wang, L. Zhang , S. Lee and H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, 2008, 319, 1229-1232.
[39]S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney and E. A. Stach, Graphene-based composite materials, Nature, 2006, 442, 282-286.
[40]D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett and G. Evmenenko, Preparation and characterization of graphene oxide paper, Nature, 2007, 448, 457-460.
[41]H. Zhang, X. J. Lv, Y. M. Li, Y. Wang and J. H. Li, P25-Graphene composite as a high performance photocatalyst, ACS Nano, 2010, 4, 380-386.
[42]P. V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett., 2009, 1, 520−527.
[43]Q. Xiang, J. Yu and M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 2012, 41, 782−796.
[44]X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang and Z. Fan, Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts, ACS Appl. Mater. Interfaces, 2012, 4, 3944−3950.
[45]P. Zhu, A. S. Nair, P. Shengjie, Y. Shengyuan and S. Ramakrishna, Facile fabrication of TiO2−graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning, ACS Appl. Mater. Interfaces, 2012, 4, 581−585.
[46]M. Q. Yang, N. Zhang and Y. J. Xu, Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study, ACS Appl. Mater., 2013, 5, 1156−1164.
[47]Z. Mou, Y. Wu, J. Sun, P. Yang, Y. Du and C. Lu, TiO2 Nanoparticles-functionalized N‑doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation, ACS Appl. Mater., 2014, 6, 13798−13806.
[48]K. C. Hsu and D. H. Chen, Highly sensitive, uniform, and reusable surface-enhanced Raman scattering substrate with TiO2 interlayer between Ag nanoparticles and reduced graphene oxide, ACS Appl. Mater., 2015, 49, 27571–27579.
[49]G. F. Huang, Z. L. Ma, W. Q. Huang, Y. Tian, C. Jiao, Z. M. Yang, Z. Wan and A. Pan, Semiconductor photocatalyst: possibilities and challenges, Chem. Commun., 2013, 49, 636–638.
[50]H. Y. Hu, Z. B. Jiao, H. C. Yu, G. X. Lu, J. H. Ye and Y. P. Bi, Facile synthesis of tetrahedral Ag3PO4 submicro-crystals with enhanced photocatalytic properties, J. Mater. Chem. A, 2013, 2387–2390.
[51]Y. P. Bi, H. Y. Hu, S. X. Ouyang, G. X. Lu, J. Y. Cao and J. H. Ye, Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges, Chem. Commun., 2012, 48, 3748–3750.
[52]Y. P. Bi, H. Y. Hu, Z. B. Jiao, H. C. Yu, G. X. Lu and J. H. Ye, Two-dimensional dendritic Ag3PO4 nanostructures and their photocatalytic properties, Phys. Chem. Chem. Phys., 2012, 14, 14486–14488.
[53]Z. G. Yi, J. H. Ye, N. Kikugawa, T. Kako, S. X. Ouyang, H. S. Williams, H. Yang, J. Y. Cao, W. J. Luo, Z. S. Li, Y. Liu and R. L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater., 2010, 9, 559–564.
[54]Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye and J. Am, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, Chem. Soc., 2011, 133, 6490–6492.
[55]X. H. Yan, Q. X. Gao, J. L. Qin, X. F. Yang, Y. Li and H. Tang, Photoluminescence and photocatalytic properties of Ag3PO4 microcrystals: an experimental and theoretical investigation, Ceram. Int., 2013, 39, 9715–9720.
[56]嚴學華&高慶俠,磷酸銀光催化研究進展,四十卷十期 (2013)
[57]X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang and H. Tang, Fabrication of Ag3PO4‑graphene composites with highly efficient and stable visible light photocatalytic performance, ACS Catal., 2013, 3, 363−369.
[58]B. Chai, J. Li and Q. Xu, Reduced graphene oxide grafted Ag3PO4 composites with efficient photocatalytic activity under visible-light irradiation, Ind. Eng. Chem. Res., 2014, 53, 8744−8752.
[59]Q. Xiang, D. Lang, T. Shen and F. Liu, Graphene-modified nanosized Ag3PO4 photocatalysts for enhanced visible-light photocatalytic activity and stability, Appl. Catal. B, 2015, 162, 196–203.
[60]X. Yang, J. Qin, Y. Jiang, K. Chen, X. Yan, D. Zhang, R. Li and H. Tang, Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria, Appl. Catal. B, 2015, 166, 231–240.
[61]K. V. Kumar, K. Porkodi and F. Rocha, Langmuir–hinshelwood kinetics– a theoretical study, Catal. Commun., 2008, 9, 82–84.
[62]Y. Zhang, N. Zhang, Z. R. Tangb and Y. J. Xu, Improving the photocatalytic performance of graphene-TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact, Phys. Chem. Chem. Phys., 2012, 14, 9167-9175.
[63]O. Akhavan, M. Abdolahad, A. Esfandiar and M. Mohatashamifar, Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction, J. Phys. Chem. C, 2010, 114, 12955-12959.
[64]S. A. S. Shah, K. Zhang, A. R. Park, K. S. Kim and N. G. Park, Single-step solvothermal synthesis of mesoporous Ag-TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity, Nanoscale, 2013, 5, 5093-50101.
[65]W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan and Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2, Appl. Catal. B, 2007, 69, 138-144.
[66]X. Pan, M. Q. Yang, Z. R. Tang and Y. J. Xu, Noncovalently functionalized graphene-directed synthesis of ultralarge graphene-based TiO2 nanosheet composites: tunable morphology and photocatalytic applications, J. Phys. Chem. C, 2014, 118, 27325-27335.
[67]T. D. N. Phan, S. Luo, Z. Liu, A. D. Gamalski, J. Tao, W. Xu, E. A. Stach, D. E. Polyansky, S. D. Senanayake, E. Fujita and J. A. Rodriguez, Striving toward noble-metal-free photocatalytic water splitting: the hydrogenated-graphene-TiO2 prototype, Chem. Mater., 2015, 27, 6282−6296.
[68]A. Furube, L. Du, K. Hara, R. Katoh, and M. Tachiya, Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles, J. Am. Chem. Soc., 2007, 129, 14852-14853.
[69]Y. Tian and T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, J. Am. Chem. Soc., 2005, 127, 7632-7637.
[70]X. Hu, Q. Zhu, X. Wang, N. Kawazoe and Y. Yang, Nonmetal–metal–semiconductor-promoted P/Ag/Ag2O/Ag3PO4/TiO2 photocatalyst with superior photocatalytic activity and stability, J. Mater. Chem. A, 2015, 3, 17858–17865.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊